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ABSTRACT

We shortly mention several perturbation problems of classical dynamical systems by stochastic
forces. We look more closely to the case of an Hamiltonian system consisting of a particle moving
in IR? under the action of a force derived from a potential V and an additional stochastic force.
We report on a recent extension of ours with Zehnder of results by Potter, Mc Kean, Markus
and Weerasinghe. Under restrictions on the growth of V' at infinity or attractiveness of the
force towards the origin we give existence, uniqueness and stability results for the solution of
the (stochastic) equations of motion. We also give a comparison theorem with solutions of a
corresponding linearised system, via a Cameron-Martin-Girsanov-Maruyama type of formula.
We also discuss the asymptotic behavior of the solution for large times, as well as the existence
of a o-finite, not finite invariant measure, the Lebesgue measure in phase space.
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1. Introduction

Stochastic perturbations of classical dynamical systems arise in various contexts. We would like
to mention briefly some of them, somewhat related methodologically, and concentrate then on
the presentation of some new results concerning stochastic perturbations of finite dimensional
Hamiltonian systems.

Historically one can trace the origins of the theory of stochastic perturbations of dynamical
systems in considerations involving random walks and Markov chains on one hand (e.g. in work
by Bachelier and Markov) and statistical mechanics on the other hand (e.g. Maxwell, Boltzmann,
Einstein and Gibbs). Work by A. Einstein (1905), Smoluchowski (1905), A. Einstein and E. Hopf
(1910), P. Langevin (1911), N. Wiener (1923), S. Bernstein, P. Lévy, L. Ornstein-G. Uhlenbeck
(1930) (cfr. e.g. [DeH-L], [Nel]) was very influential for later developments (they were in fact
forerunners of the modern theory of stochastic differential equations). Typically in this work the
time evolution of position z and velocity v of a classical system, a Newton particle, is considered.
The evolution is described by equations of the type

L ooy, MO (e, 1) - o), (1)

with K(-,t) a given (possibly space and time dependent) vector field over the state space R?
_ of the system, the deterministic force field. v > 0 is a constant (damping). The stochastically



perturbed system is obtained by adding on the right hand side a stochastic term, e.g. of the

dw(t)

white noise type, , with w(t) a Brownian motion on IR®, or more generally, of the form

o (z(t),v(t),t) ——= ( ) with o a (possibly space and time dependent) d x n-matrix and w(t) a
Brownian motlon on R™

2 =0, B 2 K (a0),) )+ (a0, w02, 1) LD L1y

Mathematically the discussion of the above equations is part of the theory of stochastic differential
equations of Ito’s or Stratonovich’s type (with known rules to commute between the two) (see
e.g. [Ar], [Ga] for introductions and [Ik-Wal, [RoW] for more advanced topics).

dw(t)

In the study of properties of behavior of solutions for large times, which interests us most here,
methods can be differentiated according to whether the damping term is present or not and
whether ¢ is degenerate or not. For the case with damping term (y > 0) with ¢ non degenerate
see e.g. [Kh].

For the case of degeneration see e.g. [Ar], [Klie].

The case v = 0 (Hamiltonian conservative systems) is the main topics to be discussed below.

Let us note however at this point that a more abstract formulation of the problem is to look at

stochastic perturbations of deterministic systems of 1. order differential equations of the form
dy(t
W0 _ gy, (12)

with y(t) a JR"-valued function and S(-,-) a given (time and space dependent) vector field. The
stochastic perturbations can be of the type

5 () L0,

with &(t) a standard Brownian motion in IR™ and & a d X m-matrix-valued (time and space-
dependent) function. The stochastically perturbed system is thus of the form

WO _ pa(e), 1)+ 5 w10, 6 .

An important case discussed in recent years in connection with quantum physics is the one where
B is a gradient field Vu, with u built from the real and imaginary parts of a function satisfying
the Schrédinger equation and & is a constant (proportional to Planck’s constant), in which case
one can look upon (1.2) as the equation of stochastic mechanics ([Ne 1,2], [BICZ]) (we remark
that (1.1)" is, on the other hand, not of this type). Existence and uniquenes of solutions of this
equation have been discussed (see e.g. [AHKS], [Car], [Ne2], [Bl-Go)), as well as other problems
like asymptotics for t — Zoo ([Car]), attainability of singularities of § (see above references
and [AFKS], {Fu]), and questions related to the physical interpretation of the equation (e.g.
[DZ], [Tr]). Let us also mention that recently the inverse problem of finding u (i.e. ) given
observations outside a bounded region has also been discussed, for the equations of stochastic
mechanics ([ABKS]). There has also been much work on stochastic mechanical equations for
motions on Riemannian manifolds (see e.g. [Gue], [BI-CZ], [AB/HK1] (and references therein)),
as well as on the stochastic mechanical equations for the motion of a (quantum mechanical)
particle in an electromagnetic field ([Mor]). We also mention a connection between stochastic
mechanical models with potentials which are Fourier transforms of measures and models of filter
theory [Arel].

Another important case discussed in connection with classical dynamical systems (e.g. engineer-
ing problems) is the one where the vector field 2 in (1.2)'is such that zero is an equilibrium point

(1.2)



and there exists a Ljapunov function (see e.g. [Kh]). Also the discussion of the small #-limit
has been pursued intensively, this limit is connected in the case of the equations of stochastic
mechanics with the semiclassical limit in quantum mechanics (cfr. [Ma-Fe], {A-HK1], [Re], [Jo-
M-S, [A-Ar]). We also mention that explicit connection between solutions of (1.2)’ and orbits
of the corresponding classical dynamical system (1.2) has been studied in the case of motions on
certain manifolds with symmetries (Lie groups, symmetric spaces) (see e.g. [E], [AAH], {Are2]).

We also recall that the case of equation (1.1)’ or (1.2)’ where 3 and & are linear is extensively
discussed in the literature, see e.g. [H], [GQ] (and references therein) and serves as a standard
reference case in many issues.

The case of infinite dimensional state space is obviously more complicated and less results are
known. For the linear case see e.g., in connection with filter theory, [Ko-Lo] (and references
therein) resp. in connection with quantum fields [AHK], [R6], [Ko]. For the nonlinear case see
e.g. [AHK?], [A-Ro], [A-Ku]. The stationary case is particularly well discussed in connection
with infinite dimensional Dirichlet forms (see [ARS]). For a recent development concerning a
four space-time dimensional model for quantum fields see [A-HK-I|. We also mention that the
equations of hydrodynamics (Euler and Navier-Stokes) with stochastic perturbation i.e.

Z—;‘:—(u-V)u+r/Au+f, dive =0 (1.3)
v = 0 resp. v > 0 being the viscosity constant, (with suitable initial and boundary conditions),
f being a deterministic plus stochastic force, have also been discussed recently in particular in
connection with the proof of the existence of invariant probability measures, see [A-C], [Cr],
[Fuj]. Finally let us mention that whereas all above examples are of elliptic-parabolic type, also
some hyperbolic stochastic (partial) differential equations can be handled, see e.g. [ARu] (and
references therein).

In this paper we shall concentrate on the case of an Hamiltonian system with finite dimensional
state space. We shall see that even in this simple case relatively little is known and many
interesting problems are open. More concretely we study an Hamiltonian system of the form

dz(t) = v(t)dt 14
dv(t) = K (z(t)) dt + dw, (14)
with w; a2 Brownian motion in R‘i, started at time 0 at the origin, i.e. {wy,t > 0} is a Markov
stochastic process, consisting of independent Gaussian distributed random variables with inde-
pendent Gaussian increments w(t) — w(s), s < ¢, with mean zero and covariance (¢ ~ s).

The inital data z(0) = o, v(0) = vy are given in IR?? (e.g. independent of the point w in the
underlying probability space). We can rewrite (1.4) in the form

y= (i) By(t) = (Kz(/it()t)))

dy(t) = B (y(t)) dt + odid, with &y = (bt),

@

(1.5)

b; a Brownian motion started at time 0 in 0, independent of w;.

Models of this type are frequently discussed in the literature mainly numerically, in connection
with vibrations in mechanical systems, wave propagation and other problems (see e.g. [Li], [Kz-S],
[Sch], [Ka]).

Hamiltonian systems of this type are also obviously important in celestial mechanics (see e.g.
[Mo]). One of the reasons for which they have not been so well studied on a mathematical
basis is the quite intricated nature of the classical motion themselves (as compared to dissipative
systems). Let us mention that a number of papers have been devoted to the study of the



corresponding deterministic problem (see e.g. [Di-Z] and references therein). For stochastic
perturbations of other type (multiplicative ones) see e.g. [APW], [P]. Orbits of very different
long time behavior cannot be separated in finite time intervals, stable and unstable behavior
being mixed. In particular, the orbits are in general neither globally stable nor asymptotically
stable, see e.g. [Ar], [Mo] and [Mo-Ze]. The nature of the orbits depends in particular on the
dimension of the system. For example in the case of more than three degrees of freedom the
phenomenon of Arnold diffusion can met one. It is interesting to find out what one can say
about perturbations in case the force is stochastic, hence typically non smooth, in particular,
whether the complicated behaviour of classical orbits is enhanced or whether stochasticity is so
strong as to change the picture radically. Potter [Po] (see also Mc Kean [McK]) analysed the
case of a 1-dimensional nonlinear oscillator perturbed by a white noise force, described by the
equations (1.4). Under assumptions on the force K(z) = —V'(z) ,V € C'(IR) being attracting
towards the origin, i.e. - K(z) <0, Potter proved the existence of global solutions and results
about recurrence as well as the invariance of Lebesgue measure dzdv under the flow given in
(1.4). These results recently have been extended in [Mark-W] who studied in particular winding
numbers around the origin associated with the solution process (z,v).

Existence and uniqueness results for solutions of higher dimensional second order Ito equa-
tions, as the systems of the type given in (1.1) have been called by Borchers [Bo], have been
deduced by Goldstein [Go] for systems with globally Lipschitz continuous force K, and Narita
[Na] in case there exists a function, decreasing along the paths analogously to a Ljapunov function
in the deterministic theory.

In the first part of this paper we shall study equations of the form (1.4) in the case where
x, and v run in R?%. In Section 2 we establish existence and uniqueness results for strong solu-
tions of the equations, under assumptions on K which are of the type K(z) = —VV(z) for some
V € CY{R?), with either a condition of the form K is linear or z - K (2) £ 0 for |z| sufficiently
large or V() sufficiently increasing at infinity. Then the solution process possesses the Markov
property and continuous sample paths, furthermore it depends continuously on the initial condi-
tions.
In section 3 we compare the solutions of the nonlinear system (1.4) with the ones of a corre-
sponding linear system given by

dz = vdt
dv = —yzdt + dw (1.6)

and v a constant dxd-matrix with positive eigenvalues. This is done by establishing a Comeron-
Martin-Girsanov-Maruyama type formula for the Radon Nikodym derivative of the probability
measures. We apply these results to prove some properties which hold with probability one for
the nonlinear system by exploiting their validity for the associated linear system.

In section 4 we recover some features of the behavior of the solution process of the nonlinear
system for large times. In particular, we give estimates for the energy functional of the process.
We introduce the generator of the diffusion, solving (1.4), and show its hypoellipticity (in the
sense that the coeficient functions span the tangent space to phase space). By a Hormander’s
type theorem one obtains the absolute continuity of the transition probability of the transition
probability w.r. to Lebesgue measure without further restrictions but continuity of the coefficient
functions. We also show that for the solution process of (2.1) an existence and uniqueness theorem
for a o-finite invariant measure, which is the "normalized” Lebesgue measure, holds. For more
details on the result presented here we refer to [AHZ], [H].



2. Existence and Uniqueness of Solution

We consider the Hamiltonian system with stochastic force given by the stochastic differential
system
dz = vdt

2.1
dv=K(z)dt + duw; @1

where t € Ry is time, z(t) is position in R? at time t,v(t) is velocity at time t.

K(-) is a deterministic force, (wy, Fi,t € Ry) is a Brownian motion in IR? started at the origin
at time zero, see section 1 for motivations. The initial conditions are given.

It is useful to introduce the phase space variable y = (z,v) € R?? and to write (2.1) in the form

dy = B(y)dt + odid, (2.2)

(). =5 2). = (5).

where (by, A¢,t € Ry), Ay = o{b,, s < t}, is an (F;) independent Brownian motion in IR?
issued from 0 at time 0. The initial condition y(0) is given. For simplicity we state the theorem
assuming y(0) = 0.

with

Theorem 2.1
Each of the following conditions is sufficient for the existence of pathwise solutions of (2.1), (2.2)
forallt € Ry :

a) 1) |K(a)— K(8)| < Cila—B| Vl]al,|8] < R, for some constants R, C; .
2) |K(a)] < C2(1+ |a]) Vo € R?, for some constant C .

b) 1) a+— K(a) is a locally Lipsschitz function from R? into IR%. Moreover
2)Ford > 1: K(a) = —=VV(a) for some V € C}{IR%)
3)a-K(a) <0 forall a € R

Remark

Corresponding statements holds for ¢ > i, with initial condition y(#y) given, and
(o —y(t)) - K(a) < 0.

Proof:

Statement a) can be proven by a stochastic version of Picard-Lindeléf method of iteration, see
e.g. [Arl] (Cor. 6.3.4) .

1) For d = 1 the statement b) in a special case of a result of Potter [Po], see e.g. [McK], [Nal].
We give a proof valid for d > 1 which uses a Ljapunov function for the solution of the stochastic
differential equation. To this end we introduce the energy functional:

1
W(y) = 3ll* + V(z) - V(0). (2.3)
Let L be the differential operator (generator) associated with (2.2) i.e.

L=v -V, +K(x) Vo+ %A,, (2.4)



where V;(V,) are the gradient w.r. to z(v), respectively, and A, is the Laplacian w.r. to v. All
operators are acting on functions of (z,v) € R?%. Applying L to the energy function W we find

tw=1 @2.5)
2
Furthermore from condition b)2)
- = 12V (@)
a-K()=~a-VV(a) = |af Bl (2.6)
we conclude for |a| # 0
lel 4
V@) = V)~ [ (8- K@)gl 2 Vo), (27)
where we used assumption b)3).
For the energy functional in (2.3) this implies
1
W(y) 2 5ol - (2.8)

and

oV, W)I* = of? < 2W(y).

Since § in locally Lipschitz continuous, following [Na2] and [Ik-Wa] (Def. 2.1) we can discuss
local solutions.
In a first step we introduce stopping times

on(w) = inf{t 2 0| [y(t)] = n}

of the process ¥ = (y(t),t > 0) and define the explosion time e(0) of ¥ for given innitial condition
y(0) =0, by
¢(0) = sup {inf | |y(¢)| 2 n} (2.9)
neN

with inf replaced by +oo if the set is empty. For any n € IV the process Y, = (y(t A o,)| t 2 0)
defines a local solution of (2.1) on the ball B,,(0), since there exists a uniform Lipschitz constant
on every B,(0) which guarantees the existence and pathwise uniqueness of solutions. For n — oo
the local solutions Y, converge a.s. to the maximal solution of (2.1), corresponding to the
martingale

d t t
i(t) — yi(0) — oi(y(s))dwr(s) + | B(u(s )dsjl t=1,...,d
yi(t) - 4(0) [Z/ {we) i) + [ )

with expectation 0, for t € [0, e(0)] efr. [Na3]. It is shown in [Na2] that the proof of existence of
a global solution Y for initial condition y(0) = 0 is equivalent to an infinite explosion time e(0),
ie. to

No= {e(o) <o, and lim fy(t)| = +oo} (2.10)
tisfyin,
satistying P(Ng _ {6(0) < OO}) =1, (211)

For times before an explosion occurs we can reexpress the energy functional W given by (2.3) by
applying Ito’s formula to the differential

AW = o(t)dw(t) + gdt +o(th)



obtaining
W(b(t)) = W(0) + /0 ofs)du(s) + d5 . (2.12)

The process W(y(t)) can be simplified by introducing analogously to [McK] a new Brownian
motion

a(r(t)) = /: v(s)dw,

with a clock running according to the time

w0= [ beras

Under the assumption of Theorem 2.1 b) a global solution of (2.1) in established due to (2.11)
by the following

Lemma 2.2

Adopting the hypothesis of Theorem 2.1 b) there holds
P(e(0)) =1

Proof:

.The proof of the higher dimensional statement can be reduced to the one for the one dimensional
case in [Po] with y being replaced by |y|. The proof is by contradiction, distinguishing the cases
7(e(0)) < oo and 7(e(0)) = 0o, and using the sample path properties of the Brownian motion a(-).
Thus the a.s. finiteness of |y(t)|, where 0 <t < ¢(0), is deduced, which yields the contradiction.

Theorem 2.3

Each of the conditions a) and b) of Theorem 2.1 is sufficient also for pathwise uniqueness of
solutions of the equations (2.1), (2.2), i.e. if y, y' are two solutions of (2.2) on the same
probability space with the same filtration s.t. y(0) = %'(0) a.s., then

y(t) =v'(t) VYt >0 a.s.

Proof:

a) This case is covered e.g. by [Fr].

b) This case follows from [Ik-Wa], (Theorem 3.1 p. 164) since the coefficients of the equations
(2.1),(2.2) are in particular locally Lipschitz continuous. This yields uniqueness for times ¢, 0 <
t < e(D), and this together with the fact {demonstrated in the proof of Theorem 2.1) that
e(0) = 0o a.s. yields uniqueness for all ¢ > 0.

It also follows from [Ik-Wa] that (2.1), (2.2) have unique strong solutions.



3. A Girsanov Formula

In this section we shall investigate whether the probability measure associated with the
solution of the stochastic differential equation (2.1), i.e.

dy(t) = B(y(t))dt + odw,

0= () o= () ==(2)

is absolutely continuous with respect to the probability measure associated with the corresponding
Gaussian process given by the stochastic differential equation

with

dn(t) = a(n)dt + adii, (3.1)
with
~[* 2d
n = (u) ) z,u €R
p— u .
a(n) = (—72) , v a constant matrix,

and vice versa. If this holds, almost sure statements concerning the nonlinear system are equiv-
alent to almost sure statements concerning the linear system.

In order to show the equivalence we shall derive a (Cameron-Martin-Maruyama-) Girsanov for-
mula relating the probability measures.

Lemma 3.1

Let W(y(¢)) = %Iv(t)|2+V(m(t))—V(mg) with V st. —VV =K, Y = (y(¢),t 2 0) satisfying
(2.1) or (2.2). Then, forall¢t >0

) E(W) = E(WO) +d:

and

i) E (W?(y(t)) = E (W(0)) + g/ E

0

+ %/Ot E (lv(s)lz) ds.

(ll—)-(-;l’—i + V(z(s)) — V(O)> ds

Proof:

Statement i) follows from 2.12 by taking expectation, and using that fot v(s)-dw(s) is a martingale
with expectation zero.

ii) Given F € C?(R), and a solution Y = (y(t),t > 0) of (2.1) or (2.2) for W(y(t)) =
%]v(t)]2 + V(z(t)) — V(zo) we calculate, using Ito formula successively,

FW(y(1)) = F(W(0))) + /0 F'(W(y(s))v(s) - dw(s)+
T
5 /0 {dF’(W(y(s))) + [o()P (W (y(s))) } ds .

Inserting F(A) = A%, A € R, we get the equation ii) of the lemma. u



Lemma3.2

Let Y be the solution of the stochastic differential equation (2.2). Then the configuration process
(z(t),t > 0) as well as the velocity process (v(t),t > 0) possess finite absolute moments of second
order.

Proof:
Starting from (2.8) we find using Lemma 3.1 1)

E(|v*) < 2E(W(y(t))) +2C:

(3.2)
= 2W (yo) + dt + 2C

Inserting equations (2.2) and (8.2) into the expression for the second moment of the configuration

process then there holds:
t
B(e) = B (| [ w(s)is?)
0

< /: E(|v(s)|?)ds (3.3)
d

< 5752 +2(W(yo) + Ca)t

where C} is a positive constant.

Lemma3.3

Let K, Y = ((z(t),v(t)), 0 <t <T) and = ((2(t),u(t)),u <t < T) be as in Theorem 2.1 and
in (3.1) respectively. There holds

T
P {/0 K (z(t)) + vz|*ds < oo} =
T
P {/0 |K(2(t)) + v2(t)|*ds < oo} =1

Proof:

As was shown in Lemma 3.2 the second absolute moment of the configuration process X =
(z(t),t > 0) is finite (see (3.3)). Since K is Lipschitz continuous and X has continuous paths P
a.e which are bounded on [0, T] we have

/0 t |K (2(t)) + y=(t)[dt < 2 /0 ) (IK(z(t))P + lvw(ﬂl"’) @

T
<2 (K%Iw(t) —aol + () + |K(zo>|2)dt < oo, (3.4)

where K, the Lipschitz constant of the sphere By,(x0), ro = max,efo,{|2(t) — 20|}, may depend
on the specific path w. Since 7 is a degenerate Gaussian process we find analogously IP a.e

T T
| G+ etora<a [ (|K<z<t>>|2+|vz(t)|2)dt

T .
< 2/0 (I_(%h(t) — 2ol + WPl + |K(wa)lz>dt <o 35)
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where K2 the Lipschitz constant of the sphere By, (20), 5o = maxyejo,q{]2(¢) — 20|}, may depend
on w, and the second constant factor is defined as |v|? = |trace v/|2. |

Proposition 3.4

Let T > 0, and (wy,t € [0,T]) be a Wiener process with state space R®. Furthermore take
(Q, F, IP) as Wiener space, and F; = o{w;,s € [0,T]) as the o-algebra generated by the Wiener
process up to time T. Let &;,7; be stochastic processes on (Q,F,F;, IP) s.t. & and n; are Fy-
measurable and assume &, 7, satisfy the stochastic differential equations

d&t = A(t, £)dt + O(t, {)dwt
dne = alt,n)dt + o(t,n)dw,

with ng = £, being Fy-measurable and
P {fo < OO} =1.

A, a,0 should satisfy the following conditions:

1) A(t,€),al(t,n),o0(t,£),0(t,n) are Fi-measurable and such that there exist unique strong
solutions &;, 7 of the above stochastic differential equations(i.e. solutions on the probability
space (2, F IP)).

i) For arbitrary fixed ¢ € [0,T] the system of algebraic equations in z over R" admits a
solution a(t, z):

a(t,z)a(t,z) = A(t,z) — alt, z).

The function a(:,-) should be measurable in t € [0,T], z € IR", and satisfy

T
FEexp (%/{; la(t, {t)|2dt> < 00

Let p1¢ resp. py, be the probability measures on (£, , F, IP) associated with £ resp. n in the sense
that the probability of {&;, € Bi,...,&, € Bp}ispe (&, € By,...,&, € B,)forall B; € B(R"),
and all t; € [0,T], and similarly for y, Then p¢ and p, are mutually absolutely continuous i.e.
are equivalent and one has IP-almost surely

iii)

Aty _ — [T ot dwe -4 [T laol dt

dpg
Proof:
The proof is a multidimensional version of the statement made in [Lip] (Th. 5.4 p. 160) for R'.
]

Theorem 3.5

Give the probability space (£, A® F, IP) as above. Let ¥ = ((z(¢),v(¢)),t > 0) with initial data
yo be the global solution of the nonlinear stochastic differential equation (2.2) with K satisfying
the assumptions of the existence and uniqueness Theorem 2.1.

Let = ((2(¢),u(?)),t > 0) be the solution of the linear stochastic differential equation (3.1).
Then the process 1 is equivalent to Y, in the sense that the probability measures p, and p,
constructed on path space  are equivalent. The Radon-Nikodym derivatives are given by

dpy _ T - . _l T » N
(o) = exp (+ [ o)+ v20) - w5 [ 1K) + 0 dt)-



i)

and

T T
Hay) = exp (— [ et +32(e) oty - 5 [ 1K) + 7w(t)i2dt) ~

Proof:

For arbitrary fixed ¢t € [0, T}, and a(y), B(y), o as in Lemma 3.2 the system of algebraic equations
in ¢ over R’ admits a measurable solution a(z)

oa(y) = Bly) —aly) - (3.6)

Denote by @;,d; the first respectively last d components of a(z) . @; is left undefined by (3.6),
for convenience we choose &;(y) = 0 . &; is determined by (3.6) as

ay(y) = alz)= K(z) +vz . (3.7

For any function k& = (k1,k2), &; € C([0,T], RY), i = 1,2, we define the exit time of h(t,z) :=
17 la(2(s))|2ds in (3.5) from the sphere of radius n by

n("ﬂ ) {mf{t I t < T} h(t Kl) >n (38)

otherwise

and set On(k) := ¥p(r1). The characteristic function xa(t,&) = X{e, (x>t} allows to define a
truncated drift coefficient A, relating by a Girsanov transformation the solution of (3.12) below
with (3.1). A, is defined by (3.9,3.10):

Kn(k1) = —(v81) + xo(t, &)[K (k1) +v£1] , (3.9)

An(r) = (Kn(ﬂl)) (3.10)
Let us consider the process Y(®)(¢) = (yfn), A; @ Fil0 £t < T') defined by

t t
™ = Yinon(y) + / (L= xa(s, Y=y ™ (s))ds + / 1= Xa(s, V)Mo dw, . (3.11)
i} o

By Proposition (2.8) equation (3.11) has a unique solution, with y(™(¢) = y(t) for ¢ < €(0).
Applying Ito’s calculus we find that Y™ satisfies the following stochastic differential equation

dy™(t) = An(y"(t))dt + odwe , Yuo =0 - (3.12)
Using
)= () = s ) () 4 7]
—7k1
we deduce

t
/ [Kn(z™) + 722 <n P ae.
0

. Moreover, the criterion for the Girsanov density to be a martingale given in Proposition (3.4) is
fulfilled, i.e we have

T ) T
Eexp [_ /0 (Kn(z("))+7(x(")))~dw(t)—% /0 |Kn(z(™()) + 7z (s))|2ds| =1, (3.13)
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and the following formula for the density holds:

dpiy
TA@.(7) TAG®.(n)
= exp [ [ et v -5 | |a<n(s))|2ds]

= CTA®(n)(M)-

T T
o) (1) = xp [ [ e +am) - dute) - dwte) = 5 [ 1Kante) + 777(8)I2d3]

(3.14)

Let T be a Baire set in the space C([0,T], R?¢) Then we approximate py(T') by the density of

the truncated process and rewrite the expression gained in this way by using (3.14)

(L) = lim_pyo (TN {Oa(k) = T})

= lim (7A@ .(x)(K) dpin(x)
PR JrN{0,(8)=T}
= lim cT("T) dl—‘n(n)

1= [pnie, (x)=T}

[ 6w duat)
r

Il

This means that pe is absolutely continuous with respect to pty, and the Radon-Nikodym deriva-

tive is given by (7.

Finally, let us point out that (3.5) also implies that the stochastic integral fOT(K (z()) + v2(2)) -
dw(t) exists and is finite (PP a.e), see e.g. [McKean|, 2.3.6 (p. 25) or [Lip], Note 7 (pp. 104).

Then

pn{¢r(k) = 0| & € suppu,} =0,
which ends the proof.
Remark 3.6

All assumptions are satisfied e.g. in the following cases:

a) for some constants ap,Cq,Ca > 0:

d = 1, V(Ol) = Clazq + Cz
d>1, V(a)=Ci|a*+Cs, qe N, Yol > ag

b) for ge IN
d=1, V(a)=a¥f(ea) with f smooth and such that
af'(@) +20f(a) 20 Vial > o,
V(a) Lipschitz for |a| < |ag|, for some ap > 0.
Remark 3.7

(3.15)
u

The restriction to initial condition yg = (0,0) is technical, and can be released since in the
autonomous case all we need is a growth condition far away from the origin, see [H]. Following
[Mark-W] from the Girsanov-type stochastic equivalence result we can transfer some conclusions
about the behaviour of the linear process in finite time to the nonlinear system. In particular we

have:
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Under the assumptions of Theorem 3.5

() +o(@t): >0  Vt>0,
provided
2(0)> +v(0)> >0 - almost surely..

4. Some Additional Remarks

We can use the energy function defined in (2.15) to obtain some estimates on the behaviour of
the solution process Y of equation (2.2) with initial condition yo = 0 as t ~» co. In fact we
have

Theorem 4.1

Under the assumptions of Theorem 2.1 the process W(y(t)) — d%, 0 <t < oo, is a martingale,
and we have

[0+ at)" <m@wowr <3 Te-o () wor-at)
k=11=1

Proof:

As was pointed out in section 2 see (2.12), W(y(t)) — W(0) is the sum of a martingale and the
nonrandom function d.

a) Applying Ito’s formula to (W(y(t)))" , repeatedly, and using that the martingale
fo v($)(W(y(s)))* ! -dw, has expectation zero, we find taking expectation

EW(y(t)") - B (W(y)") =
- /0 (d-g-E (W(y(s))”-‘) + ”(”2“ Vg (|v|2W(y(s))"_2)) ds, n>2. 1)

From (4.1) and

0< E ([o(s)'W(y(s)" ") <28 (W(y(s)"™)
we have

n

45 [ B (W)™ s SEW o)) - BWO)) (42)

<nn-1+ g) /0 ‘B (W(y(s))"‘l)ds. (4.3)

Moreover, one can easily see by induction that

E(W(y(®)") < d"E ((Vids + VW(0) "), (4.4)

where the expectatwn on the r.h.s. is with respect to standard Gaussian measure z (with mean
0 and covariance ) Computing the expectation on the r.h. side in (4.4) yields the right
estimate given in thls theorem. The proof of the left inequality goes by induction. We integrate
the inequality given by the assumption of the induction, and insert the resulting estimate into

(4.2). , .
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The process of Theorem 4.1 is a Markov diffusion process, since it solves the stochastic equation
(2.2). The Markov kernel P(t,a,db), a,b € IR*%, defined by the transition probability is then
well defined. Since K(z) is continuous by our assumptions, P(¢,a,db) defines a (Feller) Markov
semigroup on Cy(IR??). Let L be its infinitesimal generator s.t. for f € Cg°(IR*)

(LF)(@) = S B (F(t)leco.
Using Ito’s formula, see e.g. [Fr], [Si]:
(Lf)(a) = (Av + K(z) - Vo +v-V,) f(a) (4.5)

with a = (z,v). Following [Po] one can show that P(¢,a,db) is absolutely continuous w.r. to
Lebesgue-measure db for fixed ¢,a. This is seen by looking at the transition probability kernels
Py (t, a,db) for the approximation of (2.2) obtained by replacing K(z) by

K(z) if |z]<n
KAx):{KEn% if Iz{>n

By known results on the fundamental solution of degenerate parabolic equations with globally
Lipshitz coefficients we have that P"(t,q,db) = p"(t, a,b)db, with p*(t,a,b) €

€ L (db). A dominated convergence argument shows that P"(t,a,4) — P(t,a,4) and from
P*t,a,A) =0 for |A| = 0 follows that P(¢,a,4) = 0, hence the absolute continuity of
P(t,a,dbd).

Let us regard P(t,a,db) as defining a Markov semigroup T; in the space M of signed measures
with finite total variation, by defining for 4 € M

T = [ | Plt,a uda) (46)
R2d
We call p an invariant measure for the Markov semigroup 7%, or an invariant measure for the

process Y if
Tou(4) = p(4) (47)

for any Borel subset A of IR?? and all ¢ > 0. We shall see that under the above assumptions
P has a density p w.r. to Lebesgue measure. We have for (4.4) by Fubini’ s Theorem

sy = [ Plaata = [ ([ s y)u(da)> ay (48)

A

where we used the absolute continuity of P(t,a,-) w.. to Lebesgue measure. From (4.8)
absolute continuity of the invariant measure follows.
At this point, we insert the following

Remark 4.2

Let L be the infinitesimal generator of the semigroup Ty, then any invariant measure g of the
process Y of Theorem 2.1 satisfies

Lp(db) =0, (4.9)

and conversely.

Lemma 4.3

The Lebesgue measure on R*? is an invariant measure for V.
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Proof:

Let L* be the formal dual of the operator L with D(L) C C3(IR*%). For P; the dual of T; given
by:

/ (Pef)(B)u(ds) = / F(BYTen(db) vf € C3(R™)
R?d de

we get by differentiating w.r. to ¢
| JOLuen = [ | Lioua),
R24 R2d

hence, on CZ(IR*?) , there holds

This implies using the special form (4.5) of L:
L=A,—K(z)-Vy—v-V, . (4.14)
In particular, applied to Lebesgue measure A this yields
Ix=o0 . (4.11)

By Remark 4.2 A is then an invariant measure of the process ¥ solving (2.1) (or (2.2)).

Remark 4.4
One verifies easily that, if K is C*°, L is hypoelliptic in the sense that it has the form
L=X?+X, (4.12)

with Xi; = 2=, Xy, = Ki(e) - 50 +vi - 52, 1 <1 < d, so that {Xi,[Xs,, Xé)| 1<0<d}
span the smooth vector fields over R*?,
For additional results see [AHZ], [H].

Obviously many open problems remain, to name only one of them: is the solution process null
recurrent (cfr. [Bat])?
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STABILITY COF GROUND STATES
FOR NONLINEAR CLASSICAL FIELD THEORIES

Ph. Blanchard and J. Stubbe

Theoretische Physik and BiBoS
Universitdt Bielefeld
D-4800 Bielefeld 1

0. Introduction

In this contribution we want to describe a stability theory for solitary waves
of Hamiltonian systems which arise from many models in classical field theories.
Most classical field theoretic models have cammon properties, e.g. scaling behaviour,
existence of a ground state etc. [ 4] . Our abstract version will contain these in-
gredients. This will enable us to extend previous results by the authors [2,3] and
to present an alternative approach to the theory of Grillakis, Shatah and Strauss
[ 71. To illustrate the general context let us start with an well known example
namely the nonlinear logarithmic Schrddinger equation. On B n > 3 we consider
the equation '

(NLS) i¢t + Ad+ £(9) =0

where £(¢) = ¢ log l¢|2 . The associated energy is given by

(0.1 E(¢) = K(¢) =~ V(¢)
with
1 2
(0.2a) K($) = 7I£NW¢‘ dx
1 2 2
(0.2b) V{6) --Z-I 1¢1 (=1 + log l$1“) dx .
B

E(¢) 1is, at least formally, conserved for soclutions of (NLS) ..E(¢) is well-de~
fined in the class

(0.3) we=r (®)n {oen | 101° log l01° €L} .

It was proven by Cazenave [5 ] that W is a reflexive Banach space (so-called
Sobolev~Orlicz space) and that E is of class C1 on W . See also [13].

For the moment we restrict ourselves to the subspace of radial functions in

W , i.e. we consider only functions in
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(0.4) X = W, = {¢p €W, ¢ radial} .

We can write equation (NLS) also in the standard Hamiltonian form

d¢ _ '
(H) 3 = 7 E'(9) on X
where J 1is simply the multiplication by (-i) . This Hamiltonian

system is invariant under gauge transformations
(0.5) U(s)o = e ¢ , s € IR
The invariance implies the conservation of the charge
(0.6) Qo) = -3 J lol%ax

n

R

which is well-defined on X
We are interested in solitary wave solutions of (H) of the form
(0.7) ¢(t,x) = Ulwt) ¢w(x) , w fixed.

They satisfy the "stationary" equation

(0.8) -A¢ =¢ log Ié 1% - w ¢

w w w w

~which can be equivalently written in the form E'(¢) = w Q' (d).
The existence of nontrivial solutions of (0.8) can be proved by varia-
tional methods as follows:

Associated to ‘the stationary problem we define the "action" functional

(0.9) Lw(¢)

E(9) - w Q(¢)
K(9) = V, (9)

m

I

where Vw =V + wQ. In particular we are interested in solutions ¢w
which have least action among all possible nontrivial solutions of

the stationary equation. Such solutions are called ground states.

To obtain ground state solutions one solves the following constrained

minimization problem (see e.g. [1,91]):
(0.10) I(w) = inf {K(9), ¢ € X, V (¢) = 1}

The fact that a solution of this problem can be transformed into a
solution of the field equation relies essentially on the nice beha-

viour of X and Vi under the action of a scaling group T0
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Indeed, let
(0.11) Ts d(x) = ¢(x/0)

i.e. T0 is a representation of the group of dilations, then we have

7% x(6)

n
o™ v, ()

(0.12a) K(TO¢)

v, (T )
This property of K and Vi "will be called "scale covariance”.

In the case of the logarithmic Schrédinger equation the ground state

is explicitly known and given by

(0.13a) ¢w(x) = ¢o exp(= w/2)
and
(0.13b) by (%) = exp(N/2 =~ 1/2 x%)

Now we are interested in the Liapunov stability of the ¢w-orbit
{u(s)¢,,s €R} in X

For the logarithmic Schrddinger eguation the result is well-known:
The first proof of orbital stability was given by Cazenave [5 ]
using compactness methods. Recently the same result was obtained by
Blanchard, Stubbe and Vazquez [ 2 ] who extended the methods of two
earlier papers by Shatah and Strauss [11,12] .

The most general approach to the stability problem has been given very
recently by Grillakis, Shatah and Strauss [ 7] who studied the stabi-
lity of solitary waves of Hamiltonian systems in a real Banach space.
The main tool of their theory is the linearized Hamiltonian

(0.14) CHy = EY(9) - ow QY (d)

The idea is to show that the Liapunov stability of the ¢w—orbit is
equivalent to the fact that ¢w minimizes locally the energy E sub-
ject to constant charge ¢ . Moreover these properties are equivalent
to the condition that the action of the solitary wave Lm(¢w) consi-
dered as a function of w is convex. Unfortunately this theory is not
applicable to the logarithmic Schr&dinger equation since the energy
functional is not twice differentiable as pointed out in [ 2 ] and thus
the linearized operator " does’not exist. Our main goal is to pre=-
sent a stability theory for ground state solitary waves of Hamiltonian

systems for which the linearized Hamiltonian does not exist.
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In Section 1 we describe our abstract framework and state the main re-
sults. In Section 2 we give the outline's of the proofs. Technical de-
tails are omitted. They will-be published elsewhere. In Section 3 we

present some examples and in Section 4 we discuss some extensions, in

particular to systems invariant under more than one symmetry.

1. The abstract model

Let X be a real Banach space. We consider the following Hamiltonian
system on X

du

(1) 3 - JE (W

* *
where J : X onte X 1s a skew-symmetric linear operator from. X on~

to X and E : X -— R 1is a C1' functional on X .

We are now in a position to list our main assumptions:

1.1 Properties .of the energy E

E can be splitted into two scale covariant parts X and V 1i.e.

there exists a continuous mapping

(1.1) o T € L(X,X) , oE -y

such that

(1.2) T T =T , T, = Id
01 02 0102 1 X

and there exist C1 functionals K and V such that

(1.3) E(u) = K(u) - V(u)
and

(1.4a) K(T u) = o" K(u)
(1.4b) V(T u) = ¢ V(u)

with 0 <r <s , 1l.e. ¥y = r/s € (0,1) .

K and V (and hence E ) are invariant under a strongly continuous
one parameter group of isometries U(s) : X —— X , U(s+r) =

= U(s) U(r) , i.e.

(1.5a) K(U(s)u) K(u)

i

(1.5b) V{(U(s)u) V{(u) .
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Associated to this invariance there is another conserved quantity

(1.6) Q) =% <Bu,u>

*
where B : X - X is symmetric and JB is an extension of the infi-
nitesimal generator U'(0). < ,> denotes the dual pairing between X
*
and X .

1.2 Property of the 'charge' @

We assume that Q has the following behaviour under the action of the

scaling group TO
(1.7 Q(Tcu) = o9 g(u) with g=r or g=s

We define

(1.8a) Km(u) = K(u) - wérq Q(u)
(1.8b) Vw(u) = V(u) + wﬁqs Q(u)
and assume Kw(u) >0 1if u % 0 and Kw(o) = vw(o) =0
Furthermore we define
(1.9) Lm(u) = B(u) ~ w Q(u)
= Kw(u) - Vw(u)

1.3 The minimization principle

We assume that there exist w, <w such that for any w € (w1,w2)

1 2
the problem
(1.10) I(w) = inf {Kw(u) lu € X, Vw(u) = 1}
has a unique solution $w , i.e.
K,(3) =T , v F) =1
in the sense that for any minimizing sequence (un)n (i.e. V(un) = 1
and lim K (u ) = I(w)) there exists a subsequence (un ) and a
n-sow W n .
sequence of real numbers. (sn )} such that J
]
(1.11) U(sn_)un_ -——+¢w in X as njA——»m

J J

This means that any minimization sequence for (1.10) tends to the or~
bit {U(s)§ ,s € R}
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If we define ¢, = Ty . b, with F(w) = (yI ()) "/ then b, is
a ground state of the stationary equation
(1.12) Lé(¢w) =0
and u(t) = U(wt)¢w is a solitary wave solution of (H)

A consequence of the scaling property is the following virial
theorem for ¢w
(1.13) Y Kw(¢w) = Vw(¢w)
We define
(1.14) d(w) = Lw(¢w)
then d{(w) satisfies d(w) = (1 - Y)Kw(¢w) >0 by (1.13) and

1 = -
da'(w) = Q(¢w) .
Furhtermore we have the following alternative characterizations of
d(w)
(1.15a) d(w) = inf {L (v)| v+ 0, ¥y K (v) -V (v) <0}
(1.15b) d(w) = inf {Lw(v)l Kw(v) = Kw(¢w)}
Definition: The ¢w-orbit {U(wt)¢w,t €IR} is stable if for all
€ > 0 there exists a § > 0 such that if lluo— ¢w|l < 3§ and wu(t)
is a solution of (H) with u(o) = u, existing for any t > O and
sup inf [fu(t) - U(s)¢wll< € .
t>0 sEIR

Otherwise we call the ¢w-orbit unstable.

Before describing
a one-dimensional
(1ol ).

Qualitatively Lw(w)
mensional motion in a potential well. In our context Lw

to be the energy of the

dv
at

(Hmod)

which we obtain from

where u(t)

is a solution of

our results it will be convenient first to consider

mechanical analogue of our abstract model (see also

has the same form as the energy for the one-di-
turns out

'modulated' Hamiltonian system

J L&(v)

(H) by the transformation wu(t) = U(wt)v(t)

(H)
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For arbitrary fixed nonzero u € X we consider the function

1(o)

Lw(Tcu)
r

o Kw(u) - o5 Vw(u) .

]

If Vw(u) < 0 then 1l(0) 1is increasing and goes to infinity as

g - o
if Vw(u) > 0 then 1(¢) as a unique maximum o¥ = o*(u) = (v Kw(u)/
Vw(u))1/s_r and 1l(og) » © as g-» = ,

We calculate the height

(1.16) hy(w) = 1, (T 4u) = (1-y)o*" K (u) >0 .

We now define the lowest height to be passed by

d{(w) = inf hw(u) .
u*0

Equivalently, if we always normalize u so that o*¥=1, i.e.
Y Kw(u) -Vw(u) = 0 , we recover the variational characterization
(1.15a).

Hence ¢w lies on the 'mountain pass' of the energy mountains when
travelling from zero to regions far away. The height of the mountain

pass is exactly d(w) . This situation is sketched in the figure below.

>0
Vi (U)= 7k (U) =0
<0
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Having in mind this picture one has the most important informations

necessary for the proofs of our main results:

Fix w_ € (m1,w2) and let Mw

° {uexiQu) = Q¢ )1}
w

(o] o]

Theorem 1: Let d"(wo) > O . Then the ¢m -orbit is stable. In parti-

cular we have Q(¢w ) ¥ 0O and ¢w is tBe local minimum of E| .
o o Mo
o
Theorem 2: Let d"(wo) < 0. Then EIM is not locally minimized
at ¢w and the ¢ -orbit is unstable?o
o Wo
Furthermore we have the following particular cases:
Theorem 3: If Q(cbm ) = O then the ¢w -orbit is unstable and ¢w
is not a local minifum of Ely ° ©
w
o

Theorem 4: If no symmetry U exists then any ground state ¢o of

E'(¢) = O 1is unstable. ¢o is not a local minimum of the energy.

Theorems 3/4 can be interpreted as abstract versions of Derrick's
theorem [14]

2. outlines of the proofs

First of all we prove the following intermediate results.

Theorem 2.1:

a) Let ¢w be a charged ground state (Q(¢w ) *# 0). Then the energy

E has 2 local minimum in Mw at ¢ i? ana only if d(w) is

W

o o
convex at wo
b) Let Q(¢ ) =0 . Then ¢, is not a local minimum of E[u
o o} w
c) A ground state ¢o of E'(¢) = O is not a local minimum of%the
energy.
Proof:

a) Let 4 be convex at w_. For u € M, sufficiently close to

o
) there exists w® such that Kw(u)°= Kw(¢w) = (1 -v)d(w)

w
sifice a'(w,) = - Q(¢wo) # 0. Thus
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E(u) = L (u) + o o (u)
> d{w) - w d'(wo)
> d(wo) N d'(wo) by the convexity of d
= E(¢I>UJ )
o
For the opposite direction we define ww = To(w)¢w such that ww EMm
Then o
d(wo) - Wy d'(wo) = E(¢wo) =< E(ww)
_r _ .8
=0 Kw(¢w) o] Vm(¢w) + w Q(ww)
- r_ S - 1
= (o Yo©) Kw(¢w) w d (wo) by ?he
virial
theorem (1.13)
< (1-%) Kw(¢w) - wd (wo)
= d(w) - @ d'(wo) by (1.14)
For b) and c¢) we choose the curve wo = Tc ¢wo resp. wg = T0¢0.

Now we sketch the stability proof, which is a generalisation of the

method presented by Shatah [11] for nonlinear Klein-Gordon equations:

Let d"(wo) > O . For arbitrary fixed w we consider the modulated
system

(Hmod

)

Then it can be shown that

1

(2.1.1) E&D = {u € X|Lw(u)< d{w) , v Kw(u) - Vw(u) >0} U {0}
(2.1.2) RZ = {u € X|L (w) <d(w) ,y K (u) - v (a) < O}

are invariant regions under the flow of (H

)

mod
This fact can be understood if one has in mind the one-dimensional
analogues presented in Section 1. If the energy Lw is less1then the
height of the mountain pass one can never cross it. Here ]Rw re-
presents the region inside the well and IRj represents the exterior

region.
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0 <0 =0 >0 v

Vo (v) =7k, lv)

Furthermore we can characterize these regions as follows:

(2.2) R/2 = fuex |1 (w <aw) | (1-v) K (0 Sd@l .

Now for every € > O small enough there exists a t > 0 such that

if Jlu=¢ Il <8 then
Py
(2.3) d{w,) < (1-v) K, (u) <d(uw]) if Q(¢, ) >0
o o
or the reversed inequality if Q(¢w ) <0 , where w, = w ¥ e
o

In addition v, defined by u = U(mit) v, satisfies

(2.4) Ly, (Vy) < dluy)

which follows from the strict convexity of d in a neighborhood of

w .
o

Assume that ¢w is unstable. Then there exists a sequence of initial

o)-——g ¢m in X and &8 > 0 and tn > 0 such that
o

data u_(
n

(2.5) Hu (e ) =6, I > 8

o
Applying (2.3) we conclude
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now®
(1 =) Kwo(un(tn)) — d(uw,)
and (2.4) then implies

n- @ 1
Lwo(un(tn)) —— d < dluy)

But now the assumptions on the minimization problem imply that there
%

exists a subsequence of (un(tn)) which tends to the ¢w ~orbit con-

tradicting (2.5) °

The following figure illustrates the proof given above:

Lw
dlw)
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The instability proof first of all will be sketched for the case wh
we have no symmetry:

By Theorem 2.1 we know that ¢O (the ground state of E'(u) = 0 )
a local maximum along the curve wg = To¢c

*
d T ¢ . There exists Y € X such that JY

We define y = T51o=1 To%%

We define a linear functional on X by

(2.6) A(u) = - <Y,u>

Let u, € U€(¢O) . It suffices to show that g_éé%iEll is bounded
from zero as long as u(t) € Ue(¢o)

The trajectories along the vector field - J A'(u) are given by

(2.7) R((A,v) =v+ Ay
Then there exists a functional A UE - IR such that

(2.8) K(R(A(V),¥v)) = K(9_) -

Doing a Taylor expension for the energy and using the minimum proper

of ¢O we obtain for any v € U£(¢o) (v # ¢o)

(2.9) E(¢o) < E(v) + A(v) P(v)

where P(v) = <E'(v),y> . Using Q_éégLEll = P(u(t)) as long as

u(t) € U8 we easily conclude.

In the presence of a symmetry we proceed in a similar way. Let

a"(w,) <0 (or Q(¢wo) =0)

The neighborhood U, is replaced by the tube

U = {u € X | inf Hu-—U(s)¢w Il < e}
€ SEIR )

We decompose

~

‘X = <U'(0) ¢ > @ X

w
o
There exists a functional s(u) : Ué — IR such that U(s(u))u -
- € X . Then we define
Yo
(2.10) A(u) = - < Ym ,U(s(u))u >
o
- 1 4 .
for any u € U8 n Mw where Yw =J Folw =w wm with ww the

ere

is

away

ty
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curve given in the proof of theorem 2.1. Up to simple modification the

proof of instability will now run along the same lines as above

3. Applications

3.1. We start with the logarithmic Schr&dinger egquation

(3.1) i, + A6+ 0loglel?=0 on B, n>3.

As mentioned in the introduction the ground state with frequency w

is of the form

¢ (x) = ¢_(x) exp (- w/2)

w o)
Hence

(3.2) d(w) = % exp (-w) K(¢O)

with K given by (0.2a) and therefore all ground states.are stable.

3.2. Consider the following nonlinear Schrddinger equation with a non-

local nonlinearity
(3.3) i by + L9+ ( ftq Vix-y) |¢(y)|2 dy) ¢ =0
IR

As scaling group we take TO¢ = 0¢ . We define

(3.4a) K,(6) =+ [ 1v1? + wisl? , w>o0
RN

(3.4p) Vo9 =1 J J Vix-y) e 1% 16017 axay
R’ R

under suitable assumptions on V the assumptions of Section 1 are va-
1lid.

- . This is the
Ix]

so-called Pekard-Chogquard equation. The minimization problem was sol-

Consider, e.g. equation (3.3) on IR3 with V(x) =

ved by Lieb [81]. Existence of solutions for the cauchy problem in
H;(IRa) was proved by Ginibre and Velo [6]

Using the scaling properties of the stationary Pekard-Choquard we see
that

pix) = w e (w2 x)

W

is independent of w . Hence

(3.5) aw) = w’? aq)
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and therefore all ground states are stable. The same stability result
was obtained by Cazenave and Lions [ 15] using the concentration com-

pactness principle.

3.3. Consider the logarithmic Klein-Gordon equation

N

(3.6) - A¢ = ¢ log (¢)2 on R, n>3

¢tt

We study this problem in the space

regarded as a real Banach space and Wr given by (0.3) resp. (0.4).

The energy and the charge are well-defined on X and given by

(3.7) (b0 =5 J |¢1|2 + 19,17 - 1 16,17 (- 1+1ogly,1?)
n
pict
(3.8) Q(¢,,9,) = Im In oy 0 -
]R .
As scaling group we take T u(x) = u(y/o) where u(x) = (¢1(x),¢2(x)t
and define
(3.9a) K (8,,0,) =+ [ 194,12
: w T2 2 n 2
B}
(3.9b) V (0106.) =4 [ 16,12 = 16,1%(= 1+ 1og10,1%) +u [ ¢.3
. w'®1r%2 p) 1 2 2 Lt
Rr" =

Now for any fixed w € IR we have the inequality
(3.10) V,(4,9,) £V, (1wdy,0,)

with equality if and only if ¢1 = i w¢2 and therefore the minimiza-
tion problem yields indeed a solitary wave solution. For the logarith-

mic Klein Gordon eqguation the ground state is given by

(3.11) 8, (%) = 6, (x) exp( -w?/2)

Hence d(uw) = % exp (- wz)f IV¢OI2 and we have the following result:
2 R

If »” < 1/2 then the ground state ¢w is unstable.

If w® > 1/2 it is stable.
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3.4, We study the nonlinear wave equation

(3.12) Uiy - Au = g(u) on R" ; n >3

where for real-valued functions u on IRn . Under suitable conditions

on g(u) (see e.g. [1,9]) (3.12) possesses a nontrivial ground state

Uo(x) ’ UO is always unstable by Theorem 4.

4. Extensions and Comments

4.1. First of all it is natural to ask about the relation between  the

model presented here and the one of Grillakis, Shatah and Strauss [71.
We have the following:

If E" exists then Hw = E"(¢w) - W Q“(¢w) where ¢w is a ground
state satisfies the spectral assumptions of [7] , 1i.e. H, has
exactly one negative eigenvalue, a Kernel spanned by U'(O)¢w and the
rest of the spectrum positive and bounded away from zero.

2
Indeed Hw has at least some negative spectrum since

2 =
Lw(To¢w) < 0. On the other hand it has at most one do”[o=1

negative eigenvalue since ¢w is a local minimum of Lw on a C1—hyper—
surface by (1.15) . The assumption for solution of the minimization
principle (1.10) .

4.2. An extension to non~scale covariant models is also possible. Let
L satisfy the condition

w
(4.1) <L'(Au) = A L'6u) , (A =-1)u> <0 u* 0
w w
AoF 1
and define
(4.2) R (W) = <L'(u) ,u>
We can define d(w) by the minimization principle
(4.3) d(w) = inf {Lw(u) JU€E€X, ux 0, Rw(u) = 0}

Note that O is isolated in the set {u€Xx ,Rw(O) =0 in view of
condition (4.1) .

Under these assumptions one obtains the same criteria for stability/

instability in terms of d(w) as for scale-covariant models.
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4.3. The extension to more symmetries in the context of scale covariant

functionals is very difficult. But there is one simple extension:

Let K{(u) ,V(u) be invariant under N one parameter groups

(Us (s))

5 i<3<N which satisfy the 'commutation law'

(4.4) Uj(s) U, () = U (t) U.(s) V3

i Vst € IR

k k

The associated conserved quantities Qj are required to satisfy the

following scaling properties:

Q1 satisfies (1.7) while Qor wvey QN may have different scaling
behaviour. We look for ground states

(4.5) U1(w1t) U2(w2t) ‘e UN(th) ¢5
of (H) which satisfy Q2 = ... =Q. =0
In this case the stability of the orbit
{U1(s1) cee Oy sy) o2 S5 € R}

is determined by the behaviour of the function
->

(4.6) d(w) = E(¢£) - Wy Q(¢3)

in the variable Wy

This assertion enables us to extend the stability results of Section 3
to stability under perturbations which are not necessarily radial. Con-
sider e.g. the logarithmic Schrddinger eguation (3.1) . Now we choose
X = W given by (0.3) instead of Wr . Then equation (3.1) is also
invariant under translations. Gauge invariance and the

of translation invariance satisfy the commutation law (4.4)

The momentum is given by

1 —_ o
(4.7) (u) ==-5J uvu
IR
. > -1 7
which satisfies the scale relation P(Tcu) = o" P(u) .

Now ¢m is not only a ground state in W, o it is also a ground state

in W . Furthermore it has zero momentum.

Hence by the result above its stability under perturbations in W is
determined only by the frequency and there ¢ is also stable in W
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A NOTE ON SOLUTIONS OF TWO-DIMENSIONAL SEMILINEAR
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Abstract: We prove the existence of solutions u for some semilinear
elliptic vector-field equations on IR2 with a nonlinearity which is
allowed to grow at infinity 'nearly 1ike a linear exponential' in [ul.
In some cases a growth like exp(aluIY)’ a>0,0<y<2, is allowed.

This is achieved by introducing an appropriate space E of '@ priori-
solutions' for which some important continuous imbeddings are proven
replacing the well known Sobolev-imbeddings for the d > 3-dimensional
case. Then the standard variational method is applied.

I. Introduction

A first important step in the existence proof of a solution of a semi-
linear elliptic equation of the type

-Au = g{u)

d n

u: RS R, g:R" - R", n>1 (1.1)

is always to fix a space E of 4 priori solutions. Motivated by the
context where such equations occur one usually decides to look for so-
lutions of finite kinetic energy

K(U)=%||Vuu§=7j R e L (1.2)

Another natural contraint 1is that the functions in E should vanish

at #nfinity in some sense. A way to expréss this is to define E to be
the completion E1’2(IRd; Rn) of Cz(IRd; Rn) with respect to the norm
f > Ivfil,. For d >3 this definition has proved to be rather useful
(see for instance [3 -5] and references there) because then by Sobolev's
inequality
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x _ 2d
I flly, < SUVFl, . 2 =47 (1.3)

this completion can be supposed to be realized as a subspace of
Lz*(IRd; Rn) . However for d = 2 this inequality breaks down and as
a- consequence this completion even is not a space of distributions as
has been shown by J.L. Lions long ago.

So when treating the 'positive mass case' for scalar fields (i.e.

n = 1) Berestycki et al. [2] decided to look for solutions in the
subspace of radial functions of the Sobolev space Hl(IRZ). For the
case of vector fields (i.e. n > 1) and mass zero the problem is con-
siderably more complicated as is well known. This case has been trea-
ted by Brezis and Lieb [3] . They admit arbitrary polynomial bounds for
g at infinity. The restriction on the behaviour of ¢ near zero is
expressed by the condition that the potential & of ¢ 1is negative
near zero (i.e. G(0) =0 and G(y) <0 for 0 < |yl <& for some

€ > 0). Their choice of the space of & priori solutions is well adap-
ted to this situation but at the expense of not being a Banach space
of functions on IRZ.

Furthermore by the context where such equations occur and also from a
systematic point of view one should admit alse a stronger than polyno-
mial growth of ¢ at infinity as it was done in [2] . Here we want

to show that this is indeed possible even if a more general kind of be-
haviour of g near y = 0 1is allowed than that treated in [2].

Basically we will follow the general strategy of [3] respectively of
[51 but with a different space E of & priori solutions. Correspon-
dingly the main step will be to introduce an appropriate space E and
to study its properties, in particular properties of continuous imbed-
dings and continuity properties of certain classes of Niemytski opera-
tors on it. This is done in section II and finally applied in section
IIT to solve equation (1.1) wunder appropriate conditions admitting
also a growth of g at infinity nearly like a linear exponential in
ful and in the 'positive mass case' like an exponential in ut,

0 <y <2.

II. The Sobolev-type spaces Eq(IRd; R"), 2<d<g<e, n>1,
d

The spaces Eq = Eq(IR H R") are defined as the completion of
C:(IRd; R") with respect to the norm

o I FI = N Fl o+ N il (2.1)
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We consider this completion to be realized as a subspace of the Lebes~

gue space Lq(IRd; Rn) with norm i » Hq

If in section III for d = 2 such a space Eq is considered to be a
space of d priori solutions for equation (1.1) the exponent q will be
choosen according to the behaviour of the nonlinearity g near = 0.
Note that for g =d = 2 Eq is just the Sobolev space Hl(IRZ; Rn).

In this section we prove some properties of the spaces E and some
important inequalities for elements in E vhich are fundamental for a
variational approach to solutions of equation (1.1) (just as Sobolev's
inequality is for the case d > 3 ).

Lemma 2.1

For any d,n,q, 2 <d<g<», n>1, the spaces Eq(IRd; Rn) are
real separable reflexive Banach spaces.

Proof: With minor changes the proofs of the corresponding statements
for Sobolev spaces apply [6,7]

The main information about the spaces Eq which we will use is contai-
ned in the following imbedding theorem.

Theorem 2.2

Suppose d < g <« and denote % =1 - % . Then we have

a) Eq(IRd) == Lr(IRd) for all r > q with continuous injection, ex-
pressed by the inequality

r q 1 r-q ;
IIulQ < Crllullq ( a-IIVuIld) (2.2)
f 11 € .
or a u Eq
b) 1In particular the following inequality holds for all wu € Eq , all
k=0,1, 2, ...,
) < @ nun® (L onveny 2.3
rk) < k g (g Nvully) (2.3)

where r(k) =g+ k-p, (a), =a(a+l)...{a+k=-1), a =1+ % .
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Remark 2.1
Theorem 2.2 has some immediate consequences:

a) For d =2 <4qg' <q we have
Lme . rM =
HY(R® 3 R") = E, < Eq. c Eq

and by examples one sees that

Eer § By

whenever g

1 < q
b) For q = d = 2 Theorem 2.2 provides a simple proof of the well-
known Sobolev imbeddings

1

Wl e LT(R?

) for all r > 2

with explicitly known imbedding constants. At the end of this sec-
jon there is a comment on an impovement of these constants.

1,1 d

Proof: 1. Denote by D the completion of D = D(IRd)= c:(IR )
with respect to the norm ¢ — IIV¢H1 on D. By continuous exten-
sion the Gagliardo-Nirenberg inequality ([1,6] and references)

1 1 1
IIVI$ < a-IIVVII1 s P - 1 - T (2.4)
still holds on all of Dl’1 . By induction on k =0, 1, 2, ... we
will show that for any fixed u € Eq
+k
Ve = lul® , o = 1+% (2.5)

1,1

belongs to D so that the above inequality applies. Then the theo-

rem easily follows.

In order to prepare the induction proof we recall some facts about
smooth approximations of Lebesgue-integrable functions:

Choose some functions ¥ ,n € D such that
0<m<1l suppx,ne{x:lx] <1}, [ yxdx =1

and n(x) =1  forall Ixl <3 .

Then define for m = 1,2,
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X 1
en Ix| < 7M.

1
[y

Clearly x,» ny € D, Jypdx =1, and n,(x)

Now for any V € LS(IRd) it is known [6,7]

v " . s
Vey, € C(RY) and v — Vo in L a)

(2.6)
d ; s
Yo = nm(V*xm) €D (IRT) and Yo — v in L b).
Zq Now suppose U € Eq to be given. Clearly V0 = (ul® belongs to
LE(IRd) and according to the rules for weak derivatives we know
vy, = alul®hwlur, Hv el iy < 0Vl

Hence HOlder's inequality implies by choice of o

a-1; a=-1
v VOH1 < all lul llp etul iy < allullq Nvully
(2.7)

thus vV, € Ll
Next we prove that V0 can be approximated in the ||V-||1-norm by the
functions

¥ = (Vo %y ) (2.8)

m m* o ms " .

. 0 _ _ . ~ ]
Let us write Vv Vo— vwm = (1 nm)v V0+ M {VVo + vvo* Xm} (vn) (Vo*xm)‘

Then by Hélder's inequality and the fact Ilnmlloo < 1 the following
estimate is available

o .
HvVy =Vv¥ ity < ll(l-nm)VVol|1+ HVVO-VVO*xmlll+ HVnmIIBHVO*meIﬂ
a

where 1 = +

@f 5
ole

1

Since vV0 € L , the first term tends to zero for m - » by dominated

convergence. The limit m »> » of the second term also vanishes by state-
ment 2.6.a).

Since HVO*meIﬂ is bounded and since
o d_l
_ B d_q,..4
Honplig =m hvnllg 8 1= 3

the Timit m -» = of the third term also vanishes.
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This proves vw; - VVo in L1 and thus Vo € Dl’1

Hence inequality (2.4) applies
IRNINCER LA
o'p = d 01

that is by inequality (2.7)

Tlo

o 0
Nung, <% Hutl P vy

p q

Now we have ap =g + p = r(l) . Therefore inequality (2.3) holds for
k =1

3. Our induction hypothesis is that for some k > 1

v = et e pbid .
. 9 .
and Vg = st o < (OL)F;.+1 fun? (ivun ) 3 by
(2.9)
for j =0, 1, ... k-1 .

. 9%, 1pd X
For Vv, it follows Vi € L "(IR7) with

_ p(at+k-1)
A = 57k > 1

and for VVk we get

ot+k-1

VVk = (a+k) ful viul = (a+k) Vk-l viul

hence by induction hypothesis VVk € L1 follows from HGlder's inequa-
Tity.

Now we proceed as for k = 0. This time the smooth approximation are

k
¥Eo= e (Ve r,) s m= 1,02,

and the relevant estimate is

k
vV, - v¥ 1- -
WYV = eplly < 0L =mg) 9V 11+ 19V = x ¥V 11+ 19ng g HVk*meqk

and we conclude as above since
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This proves Vk € Dl’1 so that by the Gaglfardo-Nirenberg inequality

, 1 _ a+k o+k
IIVkllp £ 0q HVVkIll = =g ItV {VIul I §T|1Vk_1llpHVulld

follows. Thus inequality (2.9.b) holds also for Jj = k .

Hence this inequality and the statement Vk € Dl’1 hold for all

k =0, 1, 2, ... . Therefore the inequality in part b) of the theorem
follows. The inequality in part a) follows from this using the inter-

polation inequality where the constant Cr is explicitly known.

The following two corollaries provide some information about the defi-
nition and some continuity properties of certain Niemytski operators

on E
q

Corollary 2.3
Suppose F is a continuous function IR 5 R such that

k
a ly! for all y € A" (2.10)

wnlo

IF(y)! < clyl9 =

k

IA

0

with some exponents d <q <o , 1 <s <« , and some coefficients
ay satisfying

~unlo

Timsup | aj(a)f | L (2.11)

]

A
Then the Niemytski-operator Fs associated with F maps the subset

{ue Eq(IRd; R Zivuly < RP 3} =z, into LY(RY)  and satisfies

o«

A q 1 %k

NFu)ty < C||u”qk§0 b [ghvully1® <=, (2.12)

P
S

where by = ap(a)y (2.13)

Proof: For u € ZR the following estimate is available by Theorem 2.2
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A - q+%k
IIF(u)II1 = [ IF(u(x))ldx < C [ = 3 lul dx <
k=0
q r(k) 9. b
<CZ a 111utS - 1ulS I,<clun® = a ||uns
= k0 K 1= 90 K r{k)
P
Bk
<

bt 1
Huttdcs b, [ = H7ull,]
9 koo k *d d

P
Since by assumption [?1{ Il Vulld.]S < R this series converges, this poves the colla-

ry.

Corollary 2.4
A
Under the assumptions of Corollary 2.4 with R = + » the Niemytski operator F is

sequential continuous as a map from Eq equipped with weak topology into L%oc s

1 d

s . T A A i
f.e. if u; >u weakly in Eq then F(u;) »F(u) in Ly (R7).

Proof: If a sequence (u1.)1.EN converges weakly in Eq to some element u then it
is {strongly) bounded

sup Hu;lt = C <o

- i

i
and we may assume also uj = u almost everywhere on ]Rd. By continuity of F it

A
follows F(u].) - ?(u) for i >« for almost every x € le . Thus the statement

follows from Vitali's convergence theorem if we can show
A
sup 1l my F<“1)”1 = H(IAl) » 0 for |Al - O
i

for any measurable subset A < IRd » |Al <o, mp the operator of multiplication by 1p-

Similarly as in the proof of Corollary 2.3 we have for such a set A

r(k)
A st 2 s

. 1_1_ 1
If we observe now that with 7= a T >0
1A Y/®

Hmp Uy I|q < Iy Il r(1)
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we get

4 9 . Py
Y huat S = by ( Huwind)s

ag Flug) iy < 1A1S B d1
r(1) k=0

and thus by boundedness of  (u;); ey 1n Eq and by Theorem 2.2

SiB
sup 1y Fug)ily < 1A c
.i
since the series converges everywhere. Thus we conclude.

Some examples will illustrate the growth restrictions used in the above

corollaries.

Example 1

Suppose F : R" > R to be continuous satisfying

1
n, o k., vk aly1’ My 41
IF s (ayM Vs 2o on oy Lalyl)
k=0 Ny *KJ: 1=0 -
with 0 <y <1, a>0 and gq = Yn, > d .

Example 2
The continuous function F : R" > R s supposed to satisfy for some

constants a, b > 0 and some exponents 0 < vy <1l, d<g<w
IF(y)1 < bly1% ch(alylY)

In both cases we get for the radius RY of convergence for the series

defined by the coefficients by according to eq.(2.13):

® for 0 <y <1
RY = finite for Yy =1
0 for Yy > 1

Hence these corollaries are conviently applied for 0 <y <1, i.e.
if F is bounded at infinite by some exponential of the form

a!ylY
e
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For the case of a linear exponential (i.e. vy = 1) some more compli-

cations arise. This case is not yet worked out in detail.

If we compare the estimates given in Theorem 2.2 with the correspon-
ding estimates for the case g = 2 obtained by other methods we see
that at least for q = 2 our estimates are not the best possible
one's. We comment on this point.

For q = 2 the spate Eq coincides with the usual Sobolev space

1. Hl(IRz; Rn) . It is well known that the Fouriertransform can be

H
used to characterize conveniently elements of Lp-spaces by integrabi-
1ity conditions on their Fouriertransforms only for p = 2 . Relying
on Theorem 5.3 of reference [9] this fact can be used to give a

simple proof of the following inequalities

1 2 2
(2.14) Hull, < a(r) IIqu’2 ueH", Ilulll’2= llul|2+llvull§
for all  r > 2 with
1 1 1 3 1 1
3z -%) =mw +t 3 (- 3)
a(r) =2 2 Vg Z ¥ gy (2.15)
1/2

hence afr) <cr with some constant ¢ > 0 while inequality
(2.3) says

Hull, < constr Hunl’z (2.16)

which is a weaker estimate.

Therefore one expects that the estimates of Theorem 2.2 can be impro-
ved also for the cases q > 2 . However for gq > 2 the convenient
Fouriertransform method is not available. So a more general approach
has to be used, may be along the lines of the method used for the

Moser-Trudinger inequility 1[1,6,8] .

We consider some examples. For q =2, a >0, and 0 <y <2 choose

k
iﬁl%%ll_ (2.17)

F(y) = e =

k=0



47

with vy .n_> 2., Relying on (2.14) - (2.15) we get for all u €H1

A © k Yk Yk
a X
||F(u)|(1 < kEnY T a{yk) 'IUHI,Z

and we see, using definition 2.11, that the radius R of convergence

satisfies
P for 0 <y <2
R = RY = finite for Y = (2.18)
0 for Y > 2

We mention another example:
F(y) = Iy1%chalytY, a0, g>2, 0<y<2 .(2.19)

For q = 2 we can proceed as above to obtain (2.18) also in this
case. For g > 2 however when we rely on Corollary 2.3 we get accor-
ding to our example 2 from above for y =1 and all B > O with

A =8 % (1+3) <1, uetE u40:

q )

lul \Y tul \Y
B\ - aB (e :

while for 0 <y <1 the integral is finite for all B8 > 0 since

then RY = o

III. Solution of some two dimensional vector field equations

As we will see the class of spaces Eq introduced in the last section
is well adapted to look for solution of equation (1.1) in them for
d = 2 . According to the behaviour of the nonlinearity near y =0

the exponent q > 2 has to be fixed.
So first we 1Tist our hypotheses on the nonlinearity g

(Hg) g : R" » R" s continuous , g(0) = 0, such that
g(y) = grad G(y) for y # 0 for some potential G .
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(Hl) G : R" 5 R s continuous, of class C1 in IR"\{O},
G(0) =0, G(y)s>¢ somewhere.
(Hz) G admits a decomposition G = G+ - G_ with continuous non-

negative functions G G,(0) = 0 , such that there exists

+ L]

an exponent q > 2 and a constant b > 0 with

(i)  biy1? < 6_(y) for all y € R"
(i1) 6. (y) <o(lytY) for Iyl - 0.
(H3) y I-lyllg(y) | satisfies the growth restrictions as expressed

by statements (2.10) and (2.11) with R = + « .

(HY) G(-) satisfies the growth restrictions of assumption (H3)

Remarks

a) According to (HZ) the potential G 1is negative near y =0 ,
more precisely G(y) < -clyIq for all sufficiently small iyl
with some constant 0 < ¢ < b . Hence this assumption is a particu-
lar case of the corresponding assumption in [3]

b) By the examples mentioned in section II we know that assumption

(Hé) admits potentials G which grow nearly like a linear expo-

nential. More precisely (Hé) allows

atylY

1G(y)l < ¢ Iy19 e for lyl » o

with some constants a, c > 0 , and some exponent 0 <y <1
For q = 2 we can allow 0 <y < 2 according to our remarks in
the previous section. Hence this assumption is considerably more

general then the corresppnding one of a polynomial bound.

According to these assumptions we decide to look for solutions in the

Banach space E_ = Eq(IRZ; Rn) where the exponent q > 2 1is given

q

by assumption (H2)



49

When looking for weak solutions of equation (1.1) one clearly has to
ensure that the 'potential' is differentiable in some sense. It turns
out that essentially the weakest notion of differentiability which is
natural in this context is sufficient for our purposes. So a first
lemma states the existence of linear continuous Gateaux-derivatives in

2

all directions v € C: (R"; Rn) for all points where it is defined.

Lemma 3.1
Under the assumptions (Ho)’ (Hl)’ and (H3) the functional
V(u) : = [ G(u(x)) dx , u € D(V)

(3.1)

2

L

D(V) = {veE | G(u(-)) €L

q )

has linear continuous Gateaux-derivatives V'(uj;v) at every u € D(V)

2

in all directions v € C: (IR™ Rn) given by

Vi{usv) = [ g(u) - vdx . (3.2)

Proof: The standard versions of such a differentiability result assume
some polynomial bound for g and G (see [4,5] and references there).
So they don't apply directly. However if we take into account the basic
inequalities from Theorem 2.2 it is not hard to show that the proof
of Proposition 2.5 in [4] can be extended to the present case.

The estimates for the term
A
I1g (u)-V [A < lul 11y

([x <lull = characteristic function of the set {x € IRZIA < lu(x)1})

used there can be done in analogy with the estimate for
A
il G+(fj)[A < Iij]Ill

for X - o which will be given explicitly later in the proof of Theo-

rem 3.3.
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Lemma 3.2

Suppose g satisfies (Ho)’ (Hl)’ (H3), and

g l(0) < {0tuiy e R"Is < Iyl} (3.3)

for some & > 0 . If for u € Eq

g (u) =0

holds in the sense of distributions then the function u vanishes

u=0.

Proof: This results follows from the observation that weakly differen-
tiable functions have no finite jumps [3] . Relying on [3'] a com-
plete proof is given in [5]1 . By our assumptions on ¢ we know

6(u) € L%oc for every u € Eq » hence ﬁ(u) = 0 almost everywhere on
IRZ. By the assumption about the zeros of g this equation can hold

only if lul had a jump of height at Teast & . Thus u =0 follows.

Remark 3.1

a) Assumptions (Ho)’ (Hy)> and (H3) imply assumption (Hé)

b) Hypotheses (Ho) - (Hz) imply assumption (3.3)

Theorem 3.3
If the assumption (Ho) - (HZ) and (H3) are satisfied then the equa-

tion (1.1) has a nontrivial solution in Eq.

Proof: Step 1: Construction of an appropriate minimizing sequence:
By our assumptions and definition (3.1) the following minimization

problem is well defined:

1= inf (k(v) = = nvvid | venq), v +0, v(v) > 0

N

and there is a minimizing sequence



51

f5 € D(V), fj # 0, V(f;) >0, 1= ;lTDK(fj). (3.5)

Because of the covariance properties

2

K{vg) = K(v), V(v ) = o °V(v), v (+) = v(o+) (3.6)
we may assume in addition for all j e N
I fjllq = 1. (3.7)

Hence we get the following chain of inequalities using first part i)

and then part ii) of assumption (HZ)

b < f e_(fj)dx < J e+(f.)dx <

J -

1A

A A A
S LIf51<el@, (F5)dx + [ [e<IfyI<AlG, (f )dx + [IA<IfJ1G, (f;)dx

< afe) + C o Ile<If;I0]1 + 9, (f5) (3.8)
where by part (ii)

6,(y) < a(e) tyl1?  for Iyl <c
with a(e) » 0 for e -0 and where

Ce,x = sup {G+(y)l- e< lyl <A} <=,

The Lebesgue measure of a measurable set M is denoted by |(MI.

The third term in (3.8) s controlled by assumption (H3):

A =)
JODSIFS T G (F,)dx < [(DA<If;0] =z a (5

rik)

A
M8

a, HIA<IF1T10F.15 1F,]
_kOk J J J

1A

_ s©, s
H[A<Ifj|]fj ”q XA Hfj It
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By Theorem 2.2 we have
AT RO AL (3.9)

where o =1+ q/2, hence
2

3 (F5) < WDx < Hf 10f; ||3 by (%K(fj))]Z (3.10)

J

~
it M8
o

with by according to definition (2.13)

Since (K(fj))j €M is bounded Theorem 2.2 implies that (IIijIr)j €N

is bounded for every r > g

Therefore for fixed r > q, L1, l, we know
q r T
1/t /T -3
1 T
II[X<Ifj|]ijh < I[l<lij]| Ilfjllr < CI[A<lij]I < C'x
: _ q 71F.19 q .
since 1 llfjllq > ||[X<lfJ|]|fJ| g > A l[A<IfJI]|.

By assumption (H3) the series in inequality (3.10) converges every-

where on € . Thus we get

sup J, (f5) — 0O for A — = . (3.11)
J

Hence there are 0 < € < A <= such that by inequality (3.8)
B¢ ¢ . Ile<If,l < ATl
Z = Ve, -j =

holds for every Jj € I . Now we can use the lemma of concentration by
translation [3,5] to conclude as in [3] that there is a minimizing

sequence (“j)j € IN and an element u € Eq such that

uj - u for j e

a) weakly in Eq

b) almost everywhere on IR2

(3.12)
c) u+0.
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Step 2: We are going to show that the limit function u according to
statement (3.12) actually is a solution of the differential equation
(1.1).

Inequality (3.8) implies in particular
A
sup G (ug) dx < =,

A
Thus by (3.12.b) and Fatou's Temma we get G _(u) € Ll(IRz).

By V(uj) = V+(uj) - V_(uj) > 0 we get in the same way e_(u)e Ll(IRZ).
This proves e(u)e Ll, i.e. u € D(V).

If also V(u) = J 6 (u)dx > 0 were known the 1imit function u would
be a non trivial minimizer. In the case of scalar fields (n=1) it

is easy to prove V(u) > 0 (see later remark). Here instead it is
shown directly that a suitably scaled version of u 1is a weak solution
of our equation (without showing first V(u) > 0 ).

Take a fixed v € C° (R

o H Rn) with compact support K and apply

Corollary 2.4 to the sequences (“Kui)i el and (WKui *V)iem.

A
Since WKG(Ui) = é(nKui) this corollary implies

A A . 1,..2 -
that G(wKui) - G(nK u) in L (IR") and similarly

A A
G(“Kui +v) G(meu +v), for i -«

hence
A A A A . 1
G(ﬂKUi + V) - G(nKui) ;::: G(nKu +v) - G(nKu) in L (3.13)
A A A A
but G(nKu + V) - G(nKu) = G(u + v) - G(v),
and therefore (3.13) proves
V(ui + v) - V(ui) — V(u + v) - V(u) . (3.14)

i -

Now using the differentiability result of Lemma 3.1 one can show Jjust

as in [3]1 that there is some X > 0 such that

Vi(usv) = AK'(u3v)  for for all v e €T (R%;R") . (3.15)
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If X =0 then Remark 3.1b and Lemma 3.2 imply u = 0.

This contradiction proves A > 0 and we may rescale u according to

and obtain a nontrivial weak solution u

Vi(usv) = K'(Usv) for all v € c‘: . (3.16)

Remark 3.2

a) In the case of scalar fields (n=1) and an even potential G sphe-
rically symmetric rearrangement of functions can be used. Then it suf-
fices to restrict to the subspace of spherically symmetric (nonincrea-
sing) functions in Eq.
In this case for q=2 (the 'positive mass’ case) the existence of
infinitely many solutions has been stated in [2] for a class of po-

tentials which are bounded at infinity by
Y
2 as0, y=2. (3.17)

Taking into account the comments on the case q =2 at the end of sec~-
tion 2 it is not hard to see by (2.14) - (2.15) that Theorem 3.3
can easily be extended in the vector field case for g=2 to cover a
nonlinearity satisfying (3.17) with 0 <y < 2. For y=2 the ra-
dius of convergence of the relevant power series is finite according
to (2.18); this allows only to treat those cases for which it is pos-
sible to find a minimizing sequence of elements with sufficiently small

Hl-norms. This point is still under investigation.

b) Recall frem [6] , Theorem 8.8 that the basic step of the ellip-
A
tic regularity theory applies if g(u) € L%oc is known. The following

Lemma provides this information.
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Lemma

If the continuous function g satisfies hypothesis (H3) then for

A
Proof: By (H3) one has
s 2k , 21
[, SiPax < 1 a e 1w e T Sy
IR kK,1=0

If q>2 then q' = 2(gq-1) >q so that we can apply the estimates

of Theorem 2.2 for r . = q'+2k, i.e. rt =2(r,~1), where

2k
re = r(k) = q + 2k . Hence with o' =1 + %} = q we have
rs | (2k)
2k 2 q' (1
i uHrék < (a )2k Hul|q.(?-||VulI2f

and thus by Holder's inequality and Theorem 2.2 (observe E_ < E

9-="q°
for g <q’)
2 , 21 2 21
NI s TP R TR NI L b
, rl r.'
q'/s 2k/s 21/s q' 1/s ' 1/s K+ T
< Ml il < I () 5y (ot A
2/s

where A = (% v qu)

This proves finally

A -1 bt
Ig(u)tt, < lund Z oa(a)y A<,
2 2(q-1) k=0 K 2k
2/s
since Tim sup Iak(a)k Il/k-= 0
k » o
’ 1/s
implies lim sup lak(q)2k |1/k = 0
k -

so that the above series converges for every A € [ .

Therefore by Theorem 8.8 of [6] 1t follows that a weak solution u

2,2

of equation (1.1) 1in Eq actually belongs to W1DC n Eq.

Hence such a solution solves this equation in the sense of equality al-

most everywhere on IRZ.
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c) In analogy with method explained in [4] for the d> 3 -dimensional

case equations of the form

- Au(x) = g{x,u{x))

Z LR, g:RExR" o R, n > 1

u: IR

can also be treated in the spaces Eq(IRZ; Rn) and for some classes

of examples the existence of a (weak) solution can be proven.
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1 INTRODUCTION

We consider the Cauchy problem (initial value problem) for nonlinear Schridinger equations

in R®, of the form

i+ Au=g@) , w0, -)=00) . (NLS)

Here u is a complex-valued function defined on [0,T)XR® for some T>0, ¢ is some initial condition
defined on R™ and g is some nonlinear (local or non-local) mapping. In most of the examples that have
been considered, g has some symmetry properties and is also the gradient of some functional G. Thus,

at least formally, we have both conservation of charge and conservation of energy, that is

[uentox = [iowl e,
R’ R°

-;— I IVu(t,X)lzdx + GQu(t,) = -;-jIV¢(X)!2dX + Go() .
R" R"
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Clearly, the charge and energy involve the Hl-norm of the solution and therefore it is important to be
able to solve the local Cauchy problem in the space H'(R). Indeed, when this is possible, then global
existence results follow easily from the above conservation laws and some conditions on G (for
example G20). Obviously, in order to be able to do so, there are some necessary requirements on g;
for example, g and G need to be well defined on H'. In the applications, this will impose some
"growth" conditions on g.

The initial value problem for the nonlinear Schrdinger equation in H! has been studied in
the past few years, essentially by J Ginibre and G Velo {5,6,7,8] and by T Kato [9]. In the model case
where g(u)=|u[P-'u, the Cauchy problem is well posed in HL{(R®) for 1sp<(n+2)/(n-2). The methods
are of a perturbative nature and rely basically on sharp dispersive properties of the linear equation. All
the previous proofs require at some stage (for obtaining local estimates of the solution in HI(R?))
differentiation of the equation with respect to x, and so they don't apply to nonlinearities for which the
x-dependence is not smooth enough. For example, the results mentioned above do not cover the case
where g(u)=[u>lu+Vu, V being a non-smooth potential.

We present here a result that covers most of the previously known cases and that holds
without any smoothness assumption on g(u) with respect to x. The proof proceeds by an
approximation argument followed by a passage to the limit. Uniform estimates on the approximating
solutions are obtained from the conservation of the energy, and the passage to the limit (as well as
uniqueness) relies on the dispersive properties of the linear Schrédinger equation. Let us remark that
we do not need the conservation of charge (g does not have to satisfy the corresponding symmetry
properties) while we definitely need the conservation of the energy (g must be the gradient of some
potential G). This is in contrast with the result of [9], which applies to local nonlinearities for which
there is possibly no energy (but that are sufficiently smooth with respect to x).

In section 2 we state the main result and we give some examples of applications, and in
section 3 we give a sketch of the proof. The reader is referred to [3] for the complete proof and to [2,4]

for some related results in the critical case where the present method just fails.
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2 THE MAIN RESULT

We begin by introducing some notation. We denote by HE the Sobolev space HX(R®,C) for
any integer k, equipped with its usual norm and scalar product (always considered as a real Hilbert or
Banach space) and by LP the space LP(R",C) for any pe[1,e<], also equipped with its usual norm. We
denote by || |lyk (respectively || [l p) the norm in HX (respectively LP), and by <, > the duality pairing
between H'! and H! . p' is the conjugate exponent of p , given by 1/p + 1/p'= 1. For a given ge H! ,
we are interested in the initial value problem (NLS). '

‘We now state the assumptions on the nonlinear interaction g. We assume that g is of the form

N
g=ng , where g € C(HI,H'I). For each of the g,, we assume the following. There exists a function
k=1

Cyes CR R, two numbers 1,p € [2,20/(n-2)) (ry,py€ [2,0) if n=1,2), and a sequence
8y m€ C(L2,L?) such that

8, m(0)=0 and g, . is Lipschitz continuous from bounded sets of L? to L2, ¢S]
B & I L®Y’ a5 m—seo, uniformly on bounded sets of HL. (2)
There exists G, ;& C'(L%R) such that Gy (0)=0 and g, . =(G, )" ?3)

gk m(V)-8ic (Il 1)’ < CL(M)]|v-ull 1k for u,ve H, with lfullg1sM and {iv]l <M. (4)
1

From (3) we have Gk’m(u) = J. <g, p(SW,u>ds, for every ue H'. Thus, if we set
5

1

G (w) = J- <g (su),u>ds, (5)
0

then from (2), (5) and the embeddings Hlc L%, L®Y'c H-1, we get

Gy~ Gy a5 m—eo, uniformly on bounded sets of H. ' (6)

Finally, let us define the functionals G, G™, E and E™ by
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N
G™w) = Y, G, () forueH', ™
k=1
N
GW= Y, Gy(w) forueH', ®)
k=1
m 1 2 m 1
E (11)=-5J Vu(x)|"dx + G"(u) forueH , ©9)
Rn
1 2 1
E(u)=§-j Vu)f dx + G(u) forueH' . (10)
Rﬂ

We can now state our main result.

THEOREM 1. Assume that g satisfies the above hypotheses. Then for any @e H!, there exists T*>0
and a solution ue C([O,T*),Hl)hC1([0,T*),H'1) of (NLS). In addition, we have the following
properties.

() u is unique in C([0,T"),H) for any T'>0,

(ii) either T*=oo or else T*<eo and {[u(t)ll1—eo as t TT,

(iii) E(u(t)) = E() , for every te [0,T*).

Several remarks and comments are in order, concerning both the hypotheses on g and the statement ot

Theorem 1.

REMARK 1. It follows from conditions (1) and (2) that g(0)=0. We assume this only for the sake of
simplicity. Allowing g(0)#0 would result in adding a constant term ¢e H-! to the right hand side of
(NLS), which would not be too difficult to handle.

REMARK 2. We assume that g is split into N terms g, satisfying different conditions. This is rather
natural since in the applications (see below) the nonlinearity can be the sum of several terms having

properties that are actually different.

REMARK 3. When applying Theorem 1 to some particular example, what is given in general is g as
the sum of several terms g, . One would expect to need only assumptions on the g, 's. However, our

assumptions ((1) to (4)) are on some approximating sequence g, ., which seems somewhat unnatural.
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This phenomenon comes from the following technical difficulty. In the proof, we need to approximate
g, by some sequence 8cm satisfying (1) and (2). So if we assume only that g, satisfies (4) and is the
gradient of some functional G,& CY(H!,R), we have to find some approximate sequence satisfying (1)
and (2), and this is not obvious. For example if we think of 8y m(W)=P gy (Pyku) Where p, is a
sequence of mollifiers, then Sim will satisfy (1) to (4) except that the convergence in (2) will not be
uniform on bounded sets of H!. However, let us point out that the approximating sequence is easily

found in the important examples (see below).

REMARK 4. The solution of (NLS) does not need to satisfy the conservation of charge. However, if
we assume in addition to the other hypotheses that <g(u),iu>=0 for every ue H, then we get

conservation of charge. This is easily seen by multiplying the equation by iu, in the sense of the duality

between H! and HL.

REMARK 5. Some global existence results are easily obtained from property (ii) of Theorem 1,

conservation of energy and conservation of charge (if any). See [5,6,7,8], [9] and the examples given

below.

Let us now give some examples of nonlinearities that satisfy the hypotheses of Theorem 1.

EXAMPLE 1 (external potential). Let V be a real-valued function on R®, Assume that Ve LO+L™, with
021, o>n/2. Let g be given by g(u)=Vu for ue H! and Iet V=V+V,, with V,eL.° and V,eL". Then
g=g,+g, with gl(u)=V11i and g,(u)=V,u. Now choose r;=p,=20/(c-1), 1,=p,=2, and set
Vl,m(x)=Min{m,Max{-m,V1(x)}}, 81,m(W=Vy yu and g, =g, It is easily verified that g satisfies the
hypotheses of Theorem 1 with
Gy () = -;-f Vi 0 GO dx
e

In this case, we always have global existence and conservation of charge.

EXAMPLE 2 (Hartree-type nonlinearity, see also [7]). Let W be a real valued even function on RZ.
Assume that We L3+L> with §21, §>n/4. Let g be given by g(u)=(Wx|u[>)u and let W=W,+W,, with

W,eL3 and Wye L. Then g=g,+g, with g, (u)=(W +JuDu and 8(W)=(W,x[u2)u. Now choose
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r,=p;=408/(28-1), 1,=p,=2, and set W, m(x)=Min{m ,Max{-m,W,(x)}}, gl,m(u)=(WLm*|ulz)u and
82.x=8,- Applying Young's inequality, it is easily seen that the hypotheses of Theorem 1 are fulfilled
with .
G = 7 | Wy il uf ax .
R
In this case we always have conservation of charge. All the solutiuons are global if, for example, the

negative part of W belongs to LY+L™, with v=1 if n=1, v>1 if n=2 and v=n/2 if n>3.

EXAMPLE 3 (local nonlinearity, see also [5,6,8] and [9]). Let f:R*™C—C be a measurablc function.
Assume that f(x,0)=0 almost everywhere and that there exists M=0 and ae [0,4/(n-2)) (o [0,00) if
n=1,2) such that f(x,z,)-f(x,2,)| € M(L+z;|%+|z,/*)|zy-2,| for almost all xe R® and all z;,z,e C.

Assume that f(x,;):(z/lzl)f(x,]zl). Let g be given by g(u)(x)=f(x,u(x)). Then g satisfies the hypotheses
of Theorem 1. Indeed, a family g, , is easily found. For example, let f; and f, be given by
f(x,2)=f(x,2) if [2I<1, f)(x,z2)=2f(x,1) if |2]21, f,=f-f;. Let f; =f; and let f, = be defined by

fz,m(x,z)=f2(x,z) if |z|<m, fz’m(x,z)=(z/m)f2(x,m) if |zi2m. Let the function FI;m be defined by

lz]

Fk, n%2) = .“ fk’m(x,s) ds.
0

Then a suitable sequenée 8cm is given by gk’m(u)(x)=fk,m(x,u(x)) and

Gk’m(u) = J. Fk,m(x,u(x)) dx .
Rﬂ

Here also we have conservation of charge. The solutions are global for all the initial data if for example

§
J‘f(x,c) do 2-C -Cs® forall 20 and for some 8¢ [0,1+4/n) .
0

EXAMPLE 4. It is quite clear that if g!, g2,..., ¢f satisfy the hypotheses of the Theorem, then so does
g=glig?+...+gl . Therefore Theorem 1 applies when the nonlinearity is any finite sum of the

nonlinearities considered in the examples 1, 2 and 3.
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3 SKETCH OF THE PROOF.

The dispersive properties of the Schrodinger equation that we need are described in the

following Lemma.
LEMMA 1. Let r,pe[2,2n/(n-2)) (r,pe[2,o0] if n=1 and r,pe[2,o) if n=2) and q,ye (2,°]

(q,Ye[2,%] if n=1) with 2/q=n(1/2-1/r) and 2/y=n(1/2-1/p). Let T>0, u,e L? and feLY'(0,T,LP'(R™)).

Then there exists C depending only on n,r,p such that the solution u of

y+Au=f, u0-=9, (LS)
satisfies

llsores < € (o) + o). (11)
Lemma 1 is proved in [8] for f=0 and in [10] (see also [9]) in the special cases r=p, r=2, p=2. The
general case follows by interpolating between two of these three cases, depending on whether r>p or

r<p (see [2] for a suitable interpolation theorem).

REMARK 6. It is immediate from Lemma 1 that if f=f;+...+fy;, where each of the f; satisfy the

assumption of the lemma with exponents (Y;,p;), then

M
il o oS CC N o o +H005)
LoTL) ; 'L p 00 Pl

Now we can proceed to prove Theorem 1. We assume that g satisfies the hypotheses and we

consider @e H!. For me N we consider the solution u™ of the problem
i)+ Au™ = g™ , u(0,)=¢() , (NLS,m)

where g’“:gl,m+...+gN,m . It is not too difficult to prove (see [3]) that
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we C([0,T™);H)C!([0,T™),H ") for some T™>0 and that we have

E2(u™(t)) = E™(9) , for every te [0,T™). (12)
The next step is the following.
LEMMA 2. There exists T,>0 depending on @]l such that l|umllL~(0’T1,H1) < 2ol .
PROOF. Let [0,T, | be the maximal interval on which [[u™)llz1 < 2 ||olll . All we need is a positive
lower bound on T . Now it follows from (4), (1) and the equation that ||(u™)|y-1 is bounded on
[0,T,] by some K independent of m. Therefore, there exists a constant K' such that

lu®(t)-gll, 2 <K' t12, for te [0, T ] . (13)
From (12) we obtain

(m®)1)? = (l9llg)* + GG) - GRE™(W) + (u™(B)l2)? - (il 2% . (14)
In (14) now, we estimate the L? terms using (13) and the G™ terms using (4). Together with

Gagliardo-Nirenberg and Sobolev's inequalities, we get for some X" independent of m, some 8>0,

and for, say, t<1,
(™ ®)llgt)? < Qplig)? + K" 2. (15)

(See [3] for the details of this calculation.) For ¢ less than some T(>0, the right-hand side of (15) is less

than 4(jjo| |H1)2 , and so T is bounded from below by T .
The next Lemma is crucial for the passage to the limit.

LEMMA 3. u™ is a Cauchy sequence in C([O,Tz],LZ) for some T,>0 depending on ||¢|yt .
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PROOF. Let j,me N. From (NLS,j) and (NLS,m) we obtain (wi-u™)(0)=0 and
. N . N
PG+ AQT = D @ e M) ¢ D, & WP ™) .
k=1 k=1

Let re [2,2n/(n-2)) (re {2,00) if n=1,2) and qe (2,¢] with 2/q=n(1/2-1/r). We apply Lemma 1 and
Remark 6 to estimate (u-u™) in LY(0,T,L(R®), for some T<T,;. To this end we introduce the
exponents 7, given by 2/Y,=n(1/2-1/p,), and we estimate the terms (gk,j(uj)—gk’j(um)) and

(81 (0™)- 8y (™) in L0, T,LPY (R). By Lemma 2 and (2), we obtain
N
m m : oo
; 18,5 B8,y g 0 35 .

We estimate the terms (gk,j(uj)-gk,j(um)) by using (4) together with Holder's inequality on (0,T). This
yields

N N

y_ m i_yym
Dl e Dy € C Y T IuT g
k=1 L7OT.L™) k=1

where C is some constant depending on [|@l! , g, is given by 2/q,=n(1/2-1/r,), and o, =(q,-2)/q, >O0.
The choice of (q,r) is arbitrary, so we choose successively (q,r)=(e,2), and (@,1)=(qy1y,) for
k=1,...,N. Adding the resulting inequalities, and choosing T small enough (depending on ||@||y1), we
find that

M(T) <e(j,m) + (1/2) M(T) ,

where £(j,m)—0 as j,m—ee and

N
M(T) = [ju-u™ + Z w-u™ .
M= ”L““(O,T,Lz) A I “L“"(O,T,L"‘)
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Hence the result.

We are now in position to complete the proof of Theorem 1. First, uniqueness is obtained
with the same technique as in the proof of Lemma 3 since the g,'s satisfy the same estimates as the
8k .m's do. Now we consider the sequence u™ defined above, and we let T=Min(T,,T,) where T, and
T, are given by Lemmas 2 and 3. Let u be the limit of u™ in C(0,T,L?). From the uniform H! bound
on the u™ , we get also ue L(0,T,H!) and by Sobolev's inequality, u™—u in C(0,T,L") for any
re [2,2n/(n-2)) (re [2,00) if n=1,2). Therefore, it follows from (2) and (4) that g@(u™)—g(u) in
C(0,T,H1). Thus u solves (NLS) in L=(0,T,H"1). Now, from (4), (6), (12) and the weak lower
semicontinuity of the H!-norm we obtain that E(u(t)) < E(o) for te [0, T]. Reversing the sense of time
and using uniqueness we obtain the same property for w(s)=u(t-s), s [0,t], and in particular we get
conservation of the energy (property (iii)). Therefore, the map t—lju(t)l|;1 is continuous. Since u is
weakly continuous in H, it follows that in fact ue C(0,T,H!) and then also that ue C1(0,T,H ).

Thus we have established the existence of the solution described in Theorem 1 (all properties
except (i) on an interval [0,T] where T depends only on ||¢|ly;1 . We now extend u to be a maximal

solution on [0,T*) and property (ii) follows easily. This proves Theorem 1.
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The Cauchy problem for the Dirac equation with

cubic nonlinearity in three space dimensions
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1. Introduction
Let us consider the nonlinear Dirac equation in R x R3

(1.1) i g% = -ia.vy + mBy + k(vFey)sw,

v=y(t,x), m>0, keR,

3
where a.V¢ = I «o W .
j=1 J 9x

ay =[0 0017, a, = (o 00-i], a5 =0 01 0], ay =8=[10 0 0]
0010 0 01i O 0 00 -1 01 0 0
0100 0 -i 0 0 1 00 O 00 -1 0
1000 i 00 O 10 -10 0 00 0 -1

T T 2 _ .
(uj =0y =0y, a5 = I, Uj O = cOp oy for j # m)
and y: R x R3+ m4 is a column vector (¢1,¢2,w3,w4), p'o= $T. We put

lw[z = w*w. The operator A = -ia.V + mB is self-adjoint in 12= U?(E?))4

with domain m]. We can consider the unitary group S(t) = e—1tA(t€IR)1n
ms, 5§>0, and so we write the Cauwchy problem for the equation (1.1) in
the following integral form

t
(1.2)  w(t) = S(t) v, -1] S(e=r)a(u(n)) dr,
0

where y e M, s>2, and Jy = k(vtew)pw.The function w(t,x) = S(t)y
veryfies the Klein-Gordon equation (wave equation if m=0) with

o

Zls(t)w,] g = a7y, -imgy, .

We recall that a solution peC(R; m]) of (1.1) satisfies the conserva-

tion Tlaws

(1.3)  [w(t)l, = v 1, teR.

(1.4) Ir%»f@*(t)a.vw(t)dx + me*(t)sw(t)dx +
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5 [ whnene)? ax = (energy), teR,
where J = J 3" The energy will not be useful in our estimates. A local
R

existence and uniqueness theorem for the Cauchy problem for equation
(1.1) is easy to prove if woeIHZ. In [7], M. Reed has obtained a glo-
bal existence result for equation (1.1) with higher nonlinearity, if
m>0, ¥ e W3 and Hog Il = H}olm3 + ig;ﬁz[ﬂ v tH3/? IS(t)¥,],] is small

enough (cf. [7], theorem 2.2). The cubic case (if m>0) can also be in-
cluded in his result (cf. [3]). Furthermore, if m>0 and v, eﬂ+2+s

0<s<1, we can modify the work of M. Reed in order to obta1n an existen

ce result of the same kind, with % replaced by (1 + % s)(1 - &), €»0

such that (1 + % $)(1 - e)2>1(cf. [3]1). In §3 of this paper we extend
this result to woeIHZ, replacing the I norm by an ‘M]’p norm,

3<p_§123 and applying the estimates of Ph. Brenner for the linear Klein-

-Gordon equation (cf. [2]). In §2 we study the null mass case (m=0).
In this case we need woe H” but, as J. Ginibre and G. Velo pointed out
to us, this condition can be weakned in the framework of Besov spaces.
Then, replacing the 1% norm by an M]’p norm, 4<p<+e, and applying
the estimates of H. Pecher for the linear wave equation (cf. [5] and
[6]1) we obtain a global existence result for the Cauchy problem if

2
1 -
= 1 t t
191, = 191 g+ sup T+ 16D 7B Is(eagl

is small enough (cf.[4])

2. The null mass case (m = 0).

1]

Assume m=0, ¢ eH3. Let Hs,p'( R3), se R, d<p<tw, 1y .= 1, be the
completion of D( R 3) with respect to IF‘](lgls f( ?I .?feD( Rs). If
o el P = (5P ( R3))* with s=2-2, we have (cf. [55’ and [6])
2 p
s(tyel, < el P (10l g, * laemel g p)e e# 0.

Since we have (cf. [1]) w2 p’ H25pk; HS:P o Hs’pl where H*P  is the
completion of D( 3) with respect to IF'1 1+|F,|2 s/2 fF(e)ll.., we

|4
obtain
. +2 . 3 p'
(2.1) [S()o] 4 et "Plel 5 vy if ¢e WP | t#0.
P moeP
Furthermore, since |S(t)¢! 1.0 % cls(t)e] 5 = cle]| 3, we have
M'eP T H H

(2.2)  Is(t)e] <c !¢1]H3,t‘em.

WP -
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Hence, by (2.1) and (2.2), we obtain

2
-1+ =
2.3) Is(t < c(1+|t P + )
(2.3) | ()¢IM1,D_ (1+[t]) (I¢I]H3 !¢!M3,p)
if ¢e1H3an3’p and telR.
We need the following result:

Lemma 2.1: Assume w],wze IHa, Jy = k(w+6w)6w. We have
(2.4) 13, - szlm3 < ey (Uysd,), i d<p<ie,

Wit yloavg) = DLy o+ 1ol o) legevgl g

+ ('IP-|‘M3+IWZIH3)(IIP]’ +IKUZIM] |‘P] U’2|

MT,P 1 P'.

IJW] - J¢21M3’pl_<_c‘{(w-| ,11)2) if 4<p<sb.

(2.6) IJ‘P] _‘sz!M3,p' <

< ef( oy dagp * Dopl g ) Chenl g o+ lugl g p oy vl 5+

'

* + ol ) (e v ) [y-v ,
(oplg + Tval (ol g v+l g ) 1o 2l1,p!

if 6<pcte, with L =
-

1.2

2 p

Proof: Let us take the "simplified model" Ju=ud, ueH3( IR3) real and
Tet us estimate D3(u3-v3), where D3 is a third derivative. Let w=u-w
The terms of D3(u3- v3) are of the tyvpe e] =D3w‘uv s 92=D2_wDuv,
63=Dtzuv, 64=DwDu Dv,65=wD3uv,66=tzuDv. )

Let 4<p<+w. We have, by Holder's inecuality and Sobolev's imbedding

theorem:

931, < 1%, Tul, Ivl, < ¢ yq(u.u,v),
6,] <|Dzwf [Dul vl <c yi(w,u,v)
2 2— S p 00 'l LI ] H)

with Yq (wyu,v) = lw[H3’U!w]’p

v and —=5--—,
vl :
031, < 1puly 102uly fvl, <c vy (uu,v),

[9412i |Dw!p!Du!r !D‘/Ipi ¢ yylu,u,v),

' 3
?eslzi lof ID%uly Iv] < ¢ yqlu,u,v),
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2
log], < lulo 107l 1OV < e vy (u00v),s

with -1§=12---]6 and -3;-=%-%.
Now, let 4<p<éb, 1 +1 = 1. We have
- P p

6y 1 < 0301, lulg 1vlg < cvylousv),
gl < 0%l Puly IVl < ¢ vqlwu,v),
gl < 10l IDZul, [vl < coyq(usm,v),
[ogl . < IDuly 10uly 1oV, < ey (vie,u),
gl < luly 10%uly vl < e vy (wwnv),
logl . < lul, 1D%ul, [DVL < e vy(u,u,v),

with 1—=1I-12—p,' %:%_2 and 1—1=1 -%.

Finally, let 6<p<t=. We have,

!e]l v < !D3w|2 ‘U!

ot < Luly vl < ¢ vplu,u,y),

!ezlp. < |D2w]2 !Du}p Ivl, < ¢ vplw,usv),
(5], < 10wl 02ul, 1vl, < ¢ vplusu,v),
04, < [Duly 10uly [PVl < evp(uuy),
o5l < luly D%ul, (vl < c vplususv),
g1, < lul, 10%ul, 10V, < ¢ vp(u,m,v),

2
i = | d —=— ==,
with yz(w,u,v) !uj‘H3 lu!w]’p |v Jlsr and ==~ 5

Notice that, if 6<p<+w, we have 6>r>2 and (1 ——E—)
Now, let 4<p<+e,peC(R ;,IH3)_ We put
1-2
(2.7) flv = sup lu(t)] 4+ sup LOO+1t]) P [u(t)]
te R H te IR

Let £ = (pe B> []lo Il < +ol, where

+
—
—
§
|
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(2.8) lolly = I S(tell=lol 3+

L

By (2.3), if oe HoNK-P ,_;‘.+

hollg < (Tef 5+ [o] ).
lolly <ol 3+ ol g,
We can now prove the following theorem (cf. [4]):

Theorem 2.1: Assume b€ B3 and suppose that, for peld4,t=[ ,|| onz is
small enough. Then, there exists an unique solution ¢ of the equation
(1.1) (m=0) verifying y(0)=y_ and such that peC( R; K3)nc’ (R W?).
Furthermore, || y|| <tw.

Proof: Let n>0 and ¥ eI such that [| ¢l ;< n. We put

X(n,u,) = fveC (R B3)| [| p=S(t)w |l < n3,

o,

which is a complete metric space for the distance d(y;,y,) =||¢1*¢2H-
We have |l y[l <2n for yeX(n,p ). Define (Ty)(t)=-1{ S(t-1)d(y(7))dr,
(M) (t) =S(t)u, + (TY)(t), for peX(n,u ),  with °dy=k(v Bv)RY.

We assume that 4<p<6, since the proof in the case 6<p<+= follows by an

(=}

easy adaptation (cf. Temma 2.1). By reasons of symmetry we take t>0.
We have, by (2.4) and since 2-—% >1,

t
g s [ ]y dr s

t -2+4
3 p
< ep(on)®[(e1e) T e e

Now, by (2.3), (2.4) and (2.5), we deduce

3

t

—

o) (t)]
(To)( )'114]’9

<

IS(t=1) J((0))] 4, dT <
0 M'P
_']+_2_ ‘
P (LI(w(T)) ] g+ 19wt 4
H K->

—

t
< cJ (1+]t-t!)
0

= y ) dt
e I a1 T Bl | L lu(n)
= o ‘ n?

<

2v
! dt
uP -

A

ot 2 -2+ 4
c4(2n)3 { (1+[t—r])’1+5" (1+1]t]) 2+P dt <
0

3 “1+2 .
Cg N (1+1t]) P , by the lemma in page 78 of [7]. Hence,

| A

1Tl <cg n® if veX(n,p,) and so || Mu=s(t)p Il < cg 03, Let us take
n0>0 such that C6n0~i1' Hence, for n<ng. we have proved that
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M:X(nsw,) > X(nav,) .
b eX(n,¥ ) with n<n , we have

By a similar argument we can prove that, if ¢1,

(07 (£) = (W) ()] 3 g nZl wq-v,lls

[ Moy)(8) - (o) (81 g <o 0ol =u,ll (141ED)

) 2
Hence I Mgb.l- sz!! < Cgn H w]-wZ!I. By choosing ny <n, such that cynq<l,
we can apply Banach's fixed point theorem and this completes the proof.
%

3. The massive case (m>0).

Assume m>0, ¢>EIH2, 3<pil§?- (herllce, 3(12:-]5)>1§ and %-%§0). We have
(cf. [2] and [6] ) if ¢e H°*P , with s=1+3-2, L4+l=1,
’ - 2 P P
353
s(e)el <elt] v ol spr lomol gy p0)s for [tiz1.

Hence, since w]’pl =H]’pIC. Hs’pl, we have
1.1
-3(5- 1)
S(t)o! t 2 p ot 1,
Is(t)el j<c lt] |¢|M1,p It >
if ¢e Iw1 , and so
1 1
~3(z -3)

IS(t)¢IM1,p5c It] I¢1'Iw2,p.,|tlzh

it pe WEP
Furthermore, since !S(t)o] 1 <c|S(t)el s=clol| ,, we have
WP H H

(3.2) Is(t)¢] <cle] w2’ te R.

1 D

Hence, by (3.1) and (3.2), we obtain

-3(

l\)[—'
—cl-—a

(3.3) !S(t)¢!m1’pic(] +1t]) |¢| 1¢|M2 b )
if 9 eH2A M2 P and teR.

We need the following result:

2

Lemma 3.1: Assume By,0, €M, J0=k(3By)2p. We have

3.4) max(|Jy, - Ju Ju Ju, | ) o<
(3.4) max(19pg = v, ps [907 =305 5 50) <



77
2 2
< el 1y Lvlvgl2y 1oy -yl e

+ (!‘1’] !IHZ+ Wzlmz) (!W] !IW]’D+ Wzllw]’p)]‘b] "lelwqb’p].
3, ueH3(1R3) real
where D2 is a second derivative. Let

Proof: Let us take again the "simplified model" Ju=u
,2(u3- v3)

w=u-v. The terms of Dz(u3- v3) are of the type 9] = Dzw u v, 62=DwDuv,

and let us estimate D

93=mD2uv. Let 3<pi1§0-. We have, by Holder's inequality and Sobolev's
imbedding theorem:

le

A

o= 0%l Tul, Ivl, cvglosu,v),

10,0, < [pwlg Duly V], <cyy(s,uv),

@«

2
'e3|2 i [w|oo !D ulz Iv‘ooi c Y3(U,U),V),
with' Susv) = lwl 5 |u v and 1=1.1
Y3(UU ) .w.Hz ! !w]’p l 'W1’p na < 2

Furthermore, we have, with [_J_'+l§= 1,

loql, < 10%uly tuly Ivl < e valu,uv),
!ez,}pI < IDwIp |Dulp Ivlr] < ¢ yz(v,w,u),
2
{ez!p, = ’w!q ID “!2 IVIq ¢ Y3(U,an)s
with 1-1.1_ and 1-=71- 3
"
10 . 2
Now, Tet 3<pr,¢eC(IR; H"). We put
3(3-3)
(3.8) Mwlll = sup Tu(t)] ,+ sup [(1+lt]) "2 Polu(t)] 4 o]
telR H°  telR W'
Let £ ={¢ e]HZ! H¢H'z,<+°°}, where
(3.9) 1 ol = 1s(tyolll = ol , +sup (116D Z 7D [s()p) ;]
T K2 teR ' w'eP
By (3.3) if ¢ eHNMZ P, bl,+.:).=.1, we have ¢er and
ITollz < c(lo]l , + |ol ).

The next result has a proof similar to that of theorem 2.1, based on
Temma 3.1:
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Theorem 3.1: Assume woeH42 and suppose that, for pe]3,lg], {l w0|E is
small enough. Then, there exists an unique solution ¢ of the equation
(1.7) (m>0) verifyino v (0) =% and such that peC(RI)NC (R;M' ).
Furthermore, [[Jull] <+=. °

m

(2]

[3]

(41

€3
[o)]
[ —

7
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1. INTRODUCTION

The purpose of this lecture is to summarize some recent perturbative

results on the Cauchy problem for the non linear Klein-Gordon equation

Do = ¢ - dp = -f(g). (1.1)
Here ¢ is a complex valued function defined in space time Rn+l, the
upper dot denotes the time derivative, A is the Laplace operator in
Rr"

will be considered since the special case n = 1 is simpler and would

and f is a non linear complex valued function. Only the case nz 2

require slightly modified statements.

The existence and the properties of the solutions ¢ depend in 2
crucial way on the initial data and on the non linear term f. The
situation can be best illustrated by considering the following typical

form of f
p-1

fFlo) = Xgo + Ao | o] (1.2)
with XO’ A€eR and 1 <p< «. In this case, if one restricts conveniently
the space where to operate and therefore the space of initial data, the
Cauchy problem for the equation (1.l) has a unique local (in time)
solution. The extension of a local solution to a global one requires,
in general, additional assumptions since, as it appears already in ele-

mentary examples, local solutions may fail to exist beyond a finite

time. The standard procedure to prevent this kind of phenomenon makes

*Laboratoire associé au Centre National de la Recherche Scientifique.
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use, in an essential way, of the conservation of the energy and of some of
its positivity properties. For this reason, while there is a large
flexibility in the choice of the space where to solve the local Cauchy
problem, the available proofs of existence of solutions for the global
Cauchy problem always request the initial data to belong to the energy
space Xe = (Hz(Rn)(W Lp+l(Rn)) G)LZ(RH). These solutions will be

called finite energy solutions. The positivity property of the energy
depends crucially on the sign of A : if A <0, finite energy solutions,
known to exist for short time, can blow up; if A 20, any element of Xe

can be taken as the initial condition of a global solution in Xe.

I\
<o

Existence of global solutions of the Cauchy problem in Xe for A
can be obtained by a compactness technique, which is inherently non
perturbative in character. Instead, all proofs of uniqueness require
a perturbative argument which can be implemented in Xe under the as-

sumption
p -1 <4/(n - 2) . €1.3)

The condition (1.3) can be relaxed at the price of proving uniqueness
in a space smaller than Xe, in which case, however, the spaces of
existence and uniqueness do not match any more.

Here a presentation is given to the chain of perturbative arguments
which leads to the existence and uniqueness in Xe of global solutions
of the Cauchy problem for the equation (l.l) under the assumption (1.3)
in the situation where the energy is suitably bounded from below (A 2 0
for the example (1.2)) and for any n2 2. Proofs of the statements,
details and references to previous work are given in [3] . Additional
useful information can be found in {2]

We now provide the main notation. We denote by |\]u the norm in

r

L Lr(Rn). With each r it is convenient to associate the variables

y(r) and 8(r) defined by
y(r)/(n - 1) = 8(r)/n = 1/2 - 1/r .

For each integer k we denote by Hk = Hk(Rn) the usual Sobolev spaces.
We shall use the homogeneous Besov spaces of arbitrary order and the
associated Sobolev inequalities, for which we refer to the Appendix
both for information and references. We use the notation ég = sz(mn)
for those spaces. For any interval I, for any Banach space B, we denote
by @ (I, B) the space of strongly continuous functions from I to B.

For any q, 1 £ q < «, we denote by LI(I, B) (resp. Lq (1, B)),

loc
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the space of measurable functions o from I to B such that || (*); Bj

€ LU1) (resp.il o(+); Bl L] (D).
We shall need the operators K(t) = (—A)_l sin(—A)l
1/2

k(t) = cos(-A) t; both are bounded and strongly continuous with

/2 /2

t and
respect to t in Hk for any k.

2. THE LOCAL CAUCHY PROBLEM

The study of the Cauchy problem for the equation (1.1) can be

conveniently replaced by the study of the integral equation

(0)

? = Alty, o 3 Q) (2.1)
where toeR, 60) is a solution of the free wave equation
o0 - (2.2)
and
0 0
A, 05 0 2 o0 Ry
with
t
(F(tys 9))(t) = —de K(t - 1) flo(T)) . (2.3)
tb

At a formal level any solution of the equation (2.1) is a solution of
the equation (1.1) and, conversely, any solution of (1.1) solves (2.1)
with a suitable @(0) (solution of(2.2)) which contains the information
on the initial data at time ty- The integral (2.3) and the subsequent
ones may be understood in various senses. Generally speaking, when the
functions involved are sufficiently regqular, they are ordinary integrals
and the estimates they satisfy determine their extension to a larger
class of functions. Their meaning should be understood from the context
and will not be mentioned explicitely.

In order to prove uniqueness of the solutions of the equation
(2.1),we build a space based on two norms chosen in such a way that
F(to,.), restricted to the bounded sets of the first one, is contract~
ing with respect to the second one. Those norms involve space time
integrations and are suggested by the following fundamental estimate
for K(t) [8][6][4]
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which holds for

0< &(r) -68(s) gMin{l + yl{r), n(l - Y(r))}

l < s, r ¢ o if n= 2.

This motivates the following definitions. For any interval I and suitable

values of ¢, g, r and q,, we define the spaces

g
Xon = 1%, !y, X =L Lo, U5

and similarly the local ones in time.
The basic assumption on f is expressed by a power law estimate

of the following type
(A1) f e %l( €C,C), f(0) = 0 and for some p, 1 £ p< = and all ze C
Fr(z)| = Max{|3flaz| , |af/e3} s o1+ 1zP7hH) L (2.9)

The first important property . of F(to,.) with respect to the

previously defined spaces is contained in the next lemma.

Lemma 2.1. Let f satisfy (Al), let I be a bounded interval of time,

let to € I and let ¢, ¢, € X (1IN (I). Then

HF(tgy g1) = Fltgs 0,030 (D] sCllo; - 9,33 (D

n (2.6)
2 i} -1
< LT+ I]7 (2 g XD [P0}
i=1,2
provided g, r, q, 4y satisfy
l<g, r, q, ql £
lcr<eo ifn=23; J|y(r) s1 1ifnz3 (2.7)
(p - LIn/g < Min {1 + y(r), n(l - y(r)} (2.8)
(p - 1)/g + l/q; <1 (2.9)
nmp=2-(p-1) (n/% + 1/q) > 0. (2.10)
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The proof is a consequence of (2.4) and of Holder's and Young's ine-
qualities.

Lemma 2.1 implies immediately the following uniqueness result.

Proposition 2.1. Let f satisfy (Al), let 2, r, q, 9, satisfy (2.7)-
(2.10), let I be an open interval, let to € I and let ¢(0)e jclloc(l)n
DCOIOC(I). Then the equation (2.1) has at most one solution in jclloc(l)n
J:Oloc(l)'

By choosing suitable values of &, r, g, ay s the conditions (2.7)-
(2.10) can be satisfied for any p; in particular large values of p
require large values of & and gq. In this case, in general, finite
energy solutions do not belong to JCOloc(m) so that the previous
proposition does not apply to this important class of solutions, unless
an upper bound on p is imposed (this bound is expressed by (1.3)).

For the existence of local solutions it is sufficient to show that

balls of arbitrary radius R in X, (I) are left invariant by F(t

0 O ’ - )
for some I depending on R, or, more generally, that this happens for
the balls of an appropriate space JCZ(I) continuously embedded in'JCO(I).

It turns out that a convenient choice for this new space is
; - 49 ge
X, (0 = L1, 8°)

for suitable values of p, r and q. The Sobolev inequalities (see the
Appendix) imply that J:z(I) is continuously embedded in DCO(I) provided
n/r -~ p=nfg , 2 2 2 and 2 2 r. In order to show that F(t0,~) reproduces
the space X 2(I), the following generalization of (2.4) plays an

important role

K(t)us BO|]

LAY

cle] =Yl B2, (2.11)
which holds for all r with 0 < Ax{(r) £ 1 and all p, p', r', u such that
0 <1+ ypy=p+ 8(r) - p' - 8(r') < %(Y(F) - y(r')) (L + 1/y(r)) s 1 + y(r).

Lemma 2.2. Let f satisfy (Al), let I be a bounded interval of time, let
t, € I and let geX,(I). Then

2 n
IF (tgs0) 50, (DI s C{I%|lg 5 XD + [T] % [lo5 X, (DIP}  (2.12)

provided p, r and g satisfy 0 £ p < 1 and
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05 v(r) £ (n - 1)/(n + 1) (2.13)

0 £ (p - )(nfr -p) £ 1 + y(r) (2.14)

n, = 2 -(p -~ L)(n/r o + 1/q) > 0. (2.16)
The proof is similar to that of Lemma 2.1 where (2.4) is replaced by
(2.11). The only new ingredient is the Leibnitz rule adapted to fraction-
al derivatives (See Lemma Al).

We can now state the basic local existence and uniqueness
result for the solutions of the equation (2.1). We shall denote by
BZ(I’ R) the closed ball of radius R in X 2(I).

Proposition 2.2. Let f satisfy (Al), let p, r, q and q satisfy 0 £ p<1,
1l £q ¢ qlé'w and (2.13)-(2.16). Then for any R >0, there exists

T(R) > 0 such that, for any tO & R and for any (éO) (5 BZ(I’ R)N JCI(I),
where 1 = [t0 - T(R), ty + T(R)] , the equation (2.1) has a solution in
B, (I, 2R)N TJCl(I) with |[o; xl(l)ll 2 ||(p(0);x1(1)|| . That solution is
unique in:tz(l)ﬂ 3:1(1).

If n 2 4, the assumptions of Proposition 2.2 impose on p the

upper limit
(p - L)(n/2 - 3/2 - 1/n) <2

which is obtained by taking p~1, y(r) = (n-1)/(n+1) and q = q4;= =

This condition is not sufficient to ensure that finite energy solutions

belong -to JCZ(]R) since p, r and q are too large. A more stringent upper

limit on p (given by (1.3)) is necessary in order to allow values of

p, r, q which permit to accomodate finite energy solutions in 3:2(R).
We now discuss the behaviour of the finite energy solutions.

We fecall that the energy space Xe has been already defined in the

Introduction. If p satisfies (1.3), the Sobolev inequalities imply that

o 2. (2.17)

Xe = {((PO’ ‘1)0) P9y € Hl, IPO € LZ} = H

This is the expression to which from now on we will refer for Xe since

in all what follows (1.3) will be always supposed to hold.
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With any (wo, wo) € Xe we can construct the finite energy solution
o O (t) = Kt - t 9, + K(t - t )V (2.18)
0’'"0 0’0 )
of the equation (2.2). This solution belongs to B (R, Hl) and its
space-time integrability properties are expressed by the following
lemma [7]1[9]1[51{2]

Lemma 2.3 Let p, r, q satisfy

0 < 8(r) £ n/2

-1 £ 0 =p + &(r) - 1 < 1/2 (2.19)
g £ y(r)/2
1/g = Max(0,0) : (2.20)

Then, for any (wo, wo) e Xe’ @(O), as defined by (2.18), belongs to

x 2(]R) and satisfies the estimate

19495 2, (Il = el ll, + 1701l (2.21)

This leads to the basic local existence and uniqueness result

concerning finite energy solutions.

Proposition 2.3 Let f satisfy (Al) and (1.3). Then

(1) There exist p, r and q satisfying 0 £ p<1, (2.13)-(2.16) and (2.19)
and (2.20).

Let J:l and 3:2 correspond to the previous values of p, r, g and to

a9, 2 g. Then

(2) For any (@0, wo) € Xe there exists T > 0 depending only on

$K¢O, Yol Xe” such that for any t; € R, the equation (2.1) with JO)
defined by (2.18) has a unique solution in JCl(I)ﬂ JCZ(I) where I =

[to - T, ty + T]

(3) For any (wo, ¢O) € Xe, for any interval I, for any t
equation (2.1) with @(O)

xlloc(l)f\ x (1).

0 & I, the

defined by (2.18) has at most one solution in

2loc
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3. The Global Cauchy problem

Once the local Cauchy problem is solved, the next natural
question consists in ascertaining whether the solutions of the equation
(1.1) obtained by the previous perturbative technique can be extended
to all times. This continuation is possible if we can find an a priori
bound on the norms of the local solutions and, for this purpose, the
energy is a fundamental quantity, provided it satisfies an appropriate
positivity condition. The relevant assumption can be formulated in the

following way

(A2) There exists a function V & (61( €, R) such that V(0) = 0, V(z)
= V(|z}) for all z € € and f(z) = 3V/3Z. For all R > 0, V satisfies

the estimate
V(R) 2 -a~ R (3.1)
for some a 2 0.

For (¢, V) € X, and such that Vig) € Lt the energy is defined
by

Etg, ) = 0B Imolld + Jax vigt) (3.2)

The first part of (A2), namely the relation between f and V, implies,

at least at the formal level, that
L E(g(t), 9()) = 0 (3.3)
dt (P ’ CP - . .

where ¢ is a solution of the equation (l1.1), whereas the lower bounded-
ness condition (3.1) prevents that an infinite compensation between the
kinetic and potential parts of the energy takes place. Those two facts
altogether yield a uniform bound for ¢ in Hl at finite times in terms
of the initial data. The actual proof of energy conservation proceeds
through the following path. One first introduces suitable cut-offs

both in the equation and in the initial data, then proves a regularized
form of the conservation law, and finally deduces (3.3) by removing the

cut-offs. The next proposition summarizes the situation in exact terms.

Proposition 3.1. Let f satisfy (Al), (1.3) and (A2). Let (@0’ wo) eXe
let I be an open interval and let tO € I. Let p, r and q satisfy 05 p<1,
(2.13)-(2.15), (2.19), (2.20) and let q, 2 q. Let 0 be defined by
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(2.18) and let ¢ be a solution of the equation (2.1) in :CI(I)H J:Z(I).
Then (¢,.¢)e @ (1, Hl ® LZ) and ¢ satisfies the conservation of the

energy

ECp(t), 9(t)) = Egy, ¥y) = E (3.4)

and the estimates

Tote)], se(E, t - tg) (3.5)

1o 1B + 1T (e) |5 s S(E, t - t)? (3.6)
where

e(E, T) :]|¢0H2 cosh a [T+ (E + 32||¢0”§)1/2 al sinh a |t}

We can now state the basic global existence and uniqueness result for

finite energy solutions.

Proposition 3.2. Let f satisfy (Al, (1.3) and (A2). let (@O,wo) € Xe,

let t0 € R and let (50) be defined by (2.18). Then the equation (2.1)

has a unique solution © such that (@,é)e‘G(R, Xe)' That solution

satisfies the conservation of the energy (3.3) and the bounds (3.4)
and (3.5).

Let p, r, g and 9 be as in Proposition 3.1. Then the solution
is unique in Illoc(m)n leoc(R)'

The proof is an immediate consequence of previous results. The existence
of global solutions follows from Proposition 2.3 and the a priori
estimates of Proposition 3.1, the uniqueness in X (R)n X

lloc 210c (T
follows from Proposition 2.2 and the uniqueness in % (R, Xe) follows

from the fact that any solution in LTOC(R, Xe) belongs to L (R)N

JCZloc(R) (see Lemma 3.3 of [2]).

lloc
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APPENDIX

In this appendix we collect some basic facts about the homo-
geneous Besov and Sobolev spaces. Additional information can be found
in [11, T10] and in the Appendix of [2].

Ve define the closed subspace 7 = Z(Rn) of ¥ - 9(]2”) by

7=-1{ue¥ : (Ddﬁ)(O) = 0 for any multiindex a}

The dual of the inclusion map Z C ¥ is a surjection 1w from $' to 7
the kernel of which are the polynomials P, so that Z'= ¥'/P.

Let now U€E ‘65"(]11”), with 0 £ § < 1, $ (&) =1 for|g| <l and
$(g) = 0 for |&€| 22, and define for any § € Z

—(j+l)€)

§;8) = b2 o) - 2
With any u € ¥' we can assoclate the sequence of functions {¢j % U EujL
j e Z . That sequence is actually defined for u € Z' since uj = 0 for
u € P. For any p € R and any r and s with 1 sr., s £ o , we define the
homogeneous Besov spaces
. , jps _ s1l/s _ .
B - fuez ={§2” oy xulB1H® = filus 821 < =

and the useful auxiliary spaces

0 oo Jp silis - 1., £P -

Fhe = dv ez s I3 P opn®H i = lus PR <=t

with obvious modifications if s = «. The factor 2P in the sums mimicks
a derivative of order p . All those spaces are Banach spaces and satisfy

the following continuous embeddings

FP_cgf
rs rs
if 1 € r £s £ », and
§P £o
rs rs

if 1 £ s £ r £ o, This result allows one to compare the homogeneous

Besov spaces to the homogeneous Sobolev spaces to be defined below.

For any p € R, for any u € Z we define the operator wP by

Py
wPu (g) = |&1° G(E)
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One sees by inspection that w maps Z into Z and therefore by duality,
/
Z' into Z'. The space X = U ¥ is embedded in E? and therefore in
l1sr<e

I' so that, since any u € w(X) is the image of only one element in X,
the space X .is canonically embedded in Z'. For any p, for any r with

1l £€r < o, we define the homogeneous Sobolev space fiP by
r

AP = W PLT
r
Equipped with the norm ||u; Hg]l: |@pu|k , ﬁ? becomes a Banach space.
A non trivial argument shows that ﬁgz = ﬁg for 1 < r < », so that the

previous embeddings imply

B°, c f° c B°
r2 r rr

if 2 £ r < o, and
B° < @P c@P
rr r r2
if 1 <r £ 2.

For our purposes the useful Sobolev inequalities in Besov spaces
take the form of the following continuous inclusion

20 . o
BrZ c BZZ

with n/fr - o = n/R - o, and 1 £ r £ £ » . In particular

sp 9
Br2 cL
with nfr -p=n/g, 22 4 and 1 Srg g < «
Finally we quote a result of great use in dealing with non linear

problems in Besov spaces (see Lemma 3.2 of [2])

Lemma A.1. Let fe @ €, C) with |f'(z)] s C[zfp—l for some p, 1 £p
< o, et 0 < p<1l, letl1 sr sk <<oand1l/s = 1/r - 1/k. then the
following inequality holds '

A

If (w5 B, 1l

Cllus éﬁzHIllu]p_lus

for all u such that u € L™ for some m, 1 <m¢ »and such that the norms

in the right hand side are finite.
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CONFORMAL INVARIANCE AND TIME DECAY
FOR NONLINEAR WAVE EQUATIONS
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G. Velo
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1. INTRODUCTION AND GENERAL BACKGROUND

In this lecture, we describe some implications of the approximate
conformal invariance of the nonlinear wave (NLW) equation on the time

decay of its solutions. The equation under study is

O¢ =9 - AP = -£(9) (1.1)

n+1

where ¥ is a complex valued function defined in space-time TR ’

the upper dot denotes the time derivative, A is the Laplace operator
in ;Rn, and £ is a nonlinear complex valued function, a typical form
of which is

£(9) =19 @ P71 (1.2)

with 1 < p < «. The question under study is a special case of the more
general question of determining the asymptotic behaviour in time of the
solutions of an evolution equation for which the global Cauchy problem
can be solved in a reasonably general fashion. It is known that an
important tool for that purpose consists of a priori estimates derived
from exact or approximate conservation laws associated with the equation.
Another example which will be considered here for comparison, is that

of the nonlinear Schrddinger (NLS) equation

1@ =-1a9 429 (1.3)

*Laboratoire associé au Centre National de la Recherche Scientifique.
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with a similar interaction f, together with its approximate pseudo-
conformal conservation law [41].

It is known (see [10] and references therein contained) that for
initial data (@(0) = ¥, @(0) = yy) in the energy space X_ = H' @ L7,
the global Cauchy problem for the equation (1.1) has a unigque solution
Y which is a continuous function of time with values in Xe under as-
sumptions on f that reduce to A 2 0 and p < 1 + 4/(n-2) in the special
case (1.2). Furthermore ¢ satisfies the conservation of the energy

E(€(t), @) =E(P,: v, (1.4)
for all t ¢ R, where
N 2 2
BCe, W) = v 7R+ [axvi e (1.5)

Il .Hz denotes the norm in L? = L2(R®) and V(@) = 2k(p+l)—1|‘~P|p+1 in
the special case (1.2) (See the general definition in Section 2 below).
Similar results hold for the NLS eguation (1.3).

Conservation laws for equations such as (1.1) and (1.3) formally
result from the fact that the equation (i) is derived from a variational
problem and (ii) is invariant under a one parameter continuocus group
of transformations, through the use of Noether's theorem (see [ 3] and
references therein quoted). One is generally given a Lagrangian density
£ (9, (3,9)) where (3, ¢; 0 5w sn}= (3,9 zcb,{ajcp;l < j <}
= V¥} is the set of first order derivatives of ¥ , and the equation
is the Euler - Lagrange equation associated with the action AA defined

for any open subset A c Rp+l with smooth boundary by

B, =j & (@, {3, phat ax

With a one parameter transformation group of IJHJ' under which the
equation is invariant, there is associated an infinitesimal transfor-

n+1' namely a vector field in Rp+l {6x"; 0 < u < n} =

mation of R
{SxD = §t, {8x3; 1< j<n} = 8§x} and an infinitesimal transformation of
the field §¥ . If P satisfies the variational equation, the infini-

tesimal transformation of the action is easily seen to be

A=—f Jg¥ a
8 1 - ou

where dcu is the area n-form in Rn+l

’ J¥ is the current vector
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J¥ = - & axH - [a&’,/a(a“q’nacp

r

we use the summation convention of Relativity Theory, and the Minkowski

metric g>\u used to raise and lower indices is defined by 9p0 = 79 =1,

g)\u =0 for X # u . If the action is invariant, namely SAA =0 fo;lany

A, then the current J¥ is conserved, namely 3 Jg¥ = o. Taking for A

-the region s < x0 < t and assuming sufficientudecay at infinity in space,
one obtains the conservation law Q(t) = Q(s) for all s and t, where

the charge Q(t) is defined by

Q{t) = 0_ J0 ax
=t
If the invariance is only approximate, one obtains only the approximate
conservation law

t
o(t) - Q(s) = j R(t)dr (1.6)
s
with
- M
R(t) = J;O=T BU J" dx

In the case of the NLW equation (1.1), the Lagrangian density is

£ 9,090 = [ €12 - [v 9% - v(¥9) = " Fo ¢ - v(¥), where V is
the same potential function as in the energy (1.5). The relevant trans-
formations of space-time are those of the conformal group, generated
by the Poincaré transformations, space-time dilations, and the trans-
formations obtained therefrom by conjugation under the external auto-

oo xu(xxxx)_l. Of special interest are the transformations

morphism x
thereby obtained from space-time translations. The corresponding
infinitesimal transformation of space-time is given by

K A u

sxF = —ZaA X, X +x %, a

A
where a = {au} is a space-time vector, and the transformation of the
field ¥ is given by

A

$¢= - §x BA? + (n-1)a XA(P

Taking in particular for a the vector {1, 0, ..., 0} , one obtains the

relevant conservation law in the form (1.6) with
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QE, P, %) = 0 (£, P, 9) + 0, (£, 4) (1.7)
0t @, v = llevll2 + 20l + fleve |12+ 2 lve |
+ 2t Re <y, 2x.9% + (n~1)¢ > - (n"l)H‘PHg ' (1.8)
0,(t,9) = [ax(e? + ) i) - (1.9)
R(t,¥P) = 2t jvdx W{Y) ’ (1.10)
W(P) = (n+l) V(P) - (n-1) Re @ £(¢) , (1.11)
where r = |x|; <.,.> denotes the scalar product in 2. Q as given by

(1.7)-(1.9) will be called the conformal charge, and Q and Q, will be
called the kinetic and potential parts thereof. By an elementary compu-

tation, Q. can be réwritten in the form
0

Qolt, €, ¥) =|[tv P+ xq)Hg + l|L<P||§ + || VP + tp + (a-1) Y Hg
(1.12)
where L = x x V is the angular momentum operator, which shows in
particular that Q0 is non negative.
The fact that the conformal conservation law implies some time
decay of the solutions appears immediatly in the case of the single
power interaction (1.2), where V(¥) = 2>\(p+l)—1|’~(’|p+l and

W(Y) = [n+l = (p+1) (n-1)/2]1 V(¥P) . (1.13)

21 z 2(n+l1)/(n-1), or equivalently p21 +
t R(t,¥P) £ 0 and therefore Q(t) < Q(0)

0, one obtains by using only Q1

In fact for A = 0 and p+l =
4/(n-1), one has W(¥) < 0,
for all t ¢« R . Since Q0 >

< ¢ 72/ (ptl) (1.14)

190 1L,

L

where || . denotes the norm in L7 = LQ(B{n). That decay property was

|
L
used extensively in previous works on the NLW equation [24].

In order to assessthe strength of the decay property (1.14) it is
useful to compare it with the decay available for solutions of the free

wave equation 0¥ = 0, for which one obtains at best

e, < ca+leph™® (1.15)
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with
y{2) = (n-1)(1/2-1/2) . (1.16)

That the decay (1.15) is optimal is easily seen in the special case of
the dimension n = 3 where the solution of 0¥ = 0 with initial data
( ?O =0, ¥,) is given by

P(t) = (4rt)”t

S(r=t)* ¥,

where x denotes the convolution in Rn, and can be explicitly computed
for wo = x{r < a), the characteristic function of the ball of radius a,
to be

~1

P(t) = (4r) [az—(t—r)zl+

for t =z a. More generally solutions of O0Y= 0 with the decay (1.15) can
be constructed with the help of the following lemma. There we use the
notation w = V=A , and in addition toy(%)defined by (1.16), we also use
o) and 8§(2) defined by

a(2) = n sy = 172 - 170 . (1.17)

Lemma 1.1 [17, 20, 26]. Let n 2 2, let £ and s satisfy

1+ 8(s) < §(R) < Min(1l+ o(s), n{l+ §(s))) (1.18)

It

and 2 < & < » if n 2. Then the following estimate holds

A

H m—letiwt ‘P”R Clt|l"6(2)+6(s)H(P”s (1.19)

for all t # 0 and all @ ¢ LS.
In particular, the optimal decay (1.15) for solutions
Y(t) = R(B)y, + K(t) Y, (1.20)

of O¥= 0, where K(t) = w ! sinewt and K(t) = coswt, can be obtained

for suitable initial data ( QO' Y by using Lemma 1.1 in the border-

)
0
line case o () = 1+8(s).
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Since y(p+tl) = 2/(p+l) for p+l = zl, the decay (1.14) obtained from
the conformal conservation law coincides with the optimal decay (1.15)
in that limiting case, while it is generally weaker in the allowed range
ptl = &,. That result can then be improved (actually has been improved
in previous works [24, 291) by substituting the decay (1.14) in the
integral equation associated with the eguation (1.1) and performing
various estimates thereof. It is however a natural question to ask
whether stronger results can be obtained more directly by a more effi-
cient application of the conformal conservation law, using in particular
the kinetic part Q0 of the conformal charge. For that purpose, it is
useful to compare the case of the NLW equation with the simpler case
of the NLS equation (1.3). The solutions of that equation satisfy the
pseudo~-conformal conservation law which is similar to the conformal
conservation law of the NLW equation [4]. That law takes again the form
(1.6) where however (the subscript S stands for Schrddinger) QS = QOS
+ le with '

Qg (tr #) = 3 || Geritn) @ |2 (1.8)

0,5(t, @) = ¢ fdx V() (1.9)

R (t, ) =tde W (@) (1.10)

We (¢) = (n+2) V(¥) - n Re @ £(P). (1.11) ¢
In the case of a single power interaction (1.2), one obtains

WS(“?) = [n+2 - (p+l) n/21V(Q) (1.13)

so that for X = 0 and p+l = 2(n+2)/n or equivalently p 2 1+4/n, one has
as before WS(LP) <0, t Rs(t,‘P) < 0, Qs(t) < QS(O) for all t in R,
and the solution ¥ again satisfies the decay (1.14). The optimal time
decay available for solutions of the free Schrddinger equation i‘% =
(-1/2)A¥ is known to be

[ Pee) |, < casfey 8 W) (1-13)g
where §(4&) is defined by (1.17). The decay (1.14) is again identical
with the optimal one in the limiting case p+l = 2(n+2)/n, and weaker
in the allowed range p+l 2 2(n+2)/n. In the NLS case however, one can
obtain easily é better result by using directly the kinetic part QOS
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of the pseudo-conformal charge. For that purpose we introduce the free
Schrddinger group U(t) = exp(i(t/2)A). For each t # 0, U(t) can be re-
/2

presented as the operator of convolution with the function (2witfn

exp[ixz/(Zt)]. Furthermore, the following identity holds
J 2 x + 1itV=0U(t)x U(~-t) . (1.21)

One can then prove the following estimate.

*

Lemma 1.2 [4]. Let 2 <2< 2" = 2n/(n-2), & < « if n = 2, Then

el <clel P x v e S0 e (1.22)

for all t # 0 and all ¥ for which the right hand side is finite. (Here

C is a Sobolev constant)

Proof By an homogeneity argument, it is sufficient to prove the result
for t = -1. In that case U(1l) = 658 &F S where F is the Fourier transform,
8 is a constant phase factor, and S is the operator of multiplication

by exp(ix2/2). Then
e D) @[, = [xkFs], = s @],
by the Plancherel theorem, while
§ 1-8 (L)
el = lls®ll, <c |ws @5 [y

by a standard Sobolev inequality. This proves the lemma.
Q.E.D.

Applying Lemma 1.2 with ¥=4(t) to a solution of the NLS equation
(1.3) yields the optimal decay (1.15)S for 2 < & < 2° whenever QOS is
uniformly bounded in time, and in particular in the case of a single
power interaction (1.2) with A 2 0 and p+l 2 2(n+2)/n considered
previously.

The first main result reported in this lecture is the analogue of
Lemma 1.2 in the case of the NLW equation, yielding in particular an
estimate of the LZ norm of its solutions for 2 < & < 2° with the optimal
time decay (1.15) in terms of the kinetic part QO of the conformal
charge (See Proposition 3.2 below and [8] for more details). Actually
we shall present a stronger result, since the basic estimate involves

space~time weighted Lz norms and thereby yields an additional decay in
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space. As in the NLS case, that estimate will emerge as a variant of
a Sobolev inequality, but of a much more complicated type than the
elementary estimate (1.22).

The previous considerations and results cover the "easy" case
where the conformal conservation law immediately implies the bounded-
ness of the conformal charge, corresponding to p+1 = 21 in the special
case (1.2). In order to guess what time decay should be expected in

the more difficult case p+l < & it is useful to consider again the

'
situation for the NLS equation.lThe problem of the time decay of solu-
tions can be regarded as part of the general theory of Scattering for
that equation [4, 7, 27, 28]. Another part of that theory is the con-
struction of dispersive solutions, namely of solutions that behave
asymptotically in time as solutions of the corresponding free equation,
obtained by dropping the interaction term f. Dispersive solutions can

be constructed by solving the Cauchy problem with infinite initial

time by a contraction method, in suitable functional spaces that include
some time decay in their definition. The method can be implemented under
assumptions on £ which reduce to a lower bound on p in the special case
(1.2). That lower bound depends on the choice of the time decay that
appears in the relevant functional space. If that decay is chosen to

be as strong as the optimal decay (1.15)S, the lower bound ps(n) on p

in the NLS case turns out to be the (positive) root of the eqguation

p §(p+l) =1 (1.23)
or equivalently
2
np -(nt2) p-2=20, (1.24)

namely ps(z) =1 +./§, pS(3) = 2, etc. Remarkably enough, it can be
shown that the kinetic part of the conformal charge still remains boun-
ded in time and therefore that the optimal decay still holds for all

p > ps(n)[l4, 27, 281. We state the result in the special case (1.2)
only,in a somewhat loose way.

Proposition 1.1 [14, 27, 28] . Let pg(n) < p s 2(n+2)/n, let @ « ul,
with x ?0 € L2, and let ¥ be the(unique Hl—valued) solution of the

NLS equation (1.3) with f given by (1.2) and A 2z 0, with initial data
‘PO at time zero. Then
(1) Qos(t, Y (t)) is uniformly bounded in time.

(2) ¢ satisfies the decay estimate (1.15)S for 2<% <2 (<= if n=2).
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Sketch of proof. It suffices to prove part (1), from which part (2)

follows by Lemma 1.2, The proof proceeds in two steps.

(1) By reestimating Wgin terms of V in the pseudo-conformal conservation
law, one obtains a differential inequality for the pseudo-conformal
charge which by integration yields (among other) the decay (1.15)S for
the special value 2 = p+l.

(2) One has to estimate J¢Y (see (1.21)) in L2 uniformly in time. Now
J is easily seen to commute with i d/dt + (1/2)A, so that J ¥ satisfies

the differential equation
idge=-2aa% + a5 (1.25)
dt 2 :

and therefore the associated integral equation

t

J P (L) = U(b)x <{’0 - i fdr U(t-t) JE(P (1)) . (1.26)
o
Let now S = S(t) = exp(ix2/2t). Then J also satisfies the relation
J=5 it vs Tt (1.27)
so that
JE(P) =5 itvsTlE(9) = s itvE(sTie)
=5 it(vsT ) STl + s arvsTle) %(s“lw
-wey) X - T £

R

Therefore (1.26) is a linear equation for J ¥ regarded as an indepen-
dent function. One can then use that equation to estimate J ¥ in L2

uniformly in time by using known estimates on the operator
t
h » h(dT U(t-t)h(T)
°
[16] together with the estimate (1.15)s with £ = pt+l obtained in step
1 in order to control the factors 3f/3¢ and 9f/9 % coming from JE(¥).

That step turns out ot work precisely under the condition p > ps(n).

Q.E.D.
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The preceding line of argument can be extended to some extent to

the NLW eguation in the difficult case p+l < & but one encounters

’
several difficulties which somehow restrict thé scope of the results,

as we now explain. The optimal decay rate (1.15) in the NLW case has

§ (L) replaced by Y(L) as compared with the NLS case (or for that matter,
with the case of the massive nonlinear Klein-Gordon (NLKG) eguation

OY +¥Y+ £(¥) = 0). The shift from n to n~1 is best understood by
noticing that dispersion in the massless case ¥ = 0 occurs (at least
in odd dimensions by the Huygens principle) in (n-1)-dimensional sub-
manifolds instead of n dimensional space in the massive case and in

the Schrddinger case. Correspondingly, one expects the contraction
argument leading to the proof of existence of dispersive solutions of
the NLW equation (1.1) with interaction (1.2) to work for p > po(n) =
pg(n-1) (i.e py(3) =1 + VZ, pg (4) = 2,...). That lower bound is known

to be optimal, in view of the existing blow up results for attractive
interactions and small initial data in the opposite case p < po(n)

{11, 15, 22]. A natural tool to be used in order to implement the con-
traction argument is the estimate of Lemma 1.1l., which actually produces
the optimal decay (1.15) in the borderline case «(f) = 1 4+ &§(s). Un~
fortunately, the use of that lemma produces the expected result only
under the stronger condition p > pl(n) where pl(n) > pO(n) is the

(larger) root of the equation

2 2

n{n-1)p” - p(n® + 3n - 2) + 2 =0 (1.28)
[6, 18, 19, 23] . Extending the contraction argument from pl(n) down
to po(n) is a highly non trivial matter and has been done so far only
in dimensions 2 [12] and 3 [15, 21] for special classes of solutions,
by using in an essential way the positivity properties of the propaga-
tor for the free equation OY = 0, and by using space-time weighted
norms instead of simply Lz—norms.

The general scheme leading to the'analogue of Proposition 1.1 can
be implemented in the NLW case; in particular the expression (1.12)
for Q) is an adequate substitute for the expression Qpg = (1/2) |p'?|@.
Unfortunately the NLW analogue of the first step in the proof of that
proposition does not yield (for & = p+l) the optimal decay (1.15) but
only the weaker decay

llr26(£)

| Pe)ll, sc [t (1.29)



101

A simple power counting argument then shows that the remaining part

of the proof can be expected to hold only under an assumption on p
which allows for the contraction argument mentioned previously to work
when only the decay (1.29) is used in the definition of the relevant
functional space. That assumption turns out to be p > pz(n) where pz(n)
> pl(n) is the (positive) root of the equation [25]

p(28(p+1) - 1) =1 (1.30)
or equivalently

(n-1)p? -(n+2)p-1 = 0 .

Thus, although one may conjecture that the analogue of Proposition 1.1
holds in the NLW case for p > pO(n), the available method of proof is
restricted to p > pz(n) .

A final difference between the NLS and NLW cases 1s the technical
fact that the estimates on the integral equation are substantially
more difficult in the latter case than in the former. As a consequence
the expected results have been proved only for certain dimensions,
namely n = 3 and n = 4 [9].The case of higher dimension is technically
more complicated and has not been worked out in detail. The case of
dimension n = 2 can be analyzed rather completely down to p2(2), but
is plagued with special difficulties in the form of logarithmic factors
[81. The case n = 1 does not seem to be interesting in the present con-
“text.

The second main result reported in this lecture is the analogue of
Proposition 1.1 in the case of the NLW equation, in the case of space
dimension n = 2, 3 and 4 and under assumptions on £ that reduce to
pz(n) < p < 1+4/(n-2) in the special case (1.2), according to the pre-
ceding discussion.

The remaining part of this lecture is organized as follows. In
Section 2 we state the conformal conservation law for the NLW equation
with the relevant functional analytic details, including in particular
the choice of the relevant space of initial data and the natural as-
sumptions on the interaction f. In section 3, we state the basic apriori
estimates in terms of the kinetic part of the conformal charge, extend-
ing Lemma 1.2 to the NLW case, and we give a brief sketch of their
proof. Finally in Section 4, we derive therefrom the resulting decay
estimates of the solutions of the NLW equation, first for general n 2

2 in the easy case corresponding to p+l = % and then for n = 2, 3,

1'
4 in the harder case pz(n) <p <& - 1. We refer the reader to [8]
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for a complete treatment of the special case n = 2 and to [8,9] for
the details of the proofs.

We conclude this section with the remark that, in the framework of
Scattering Theory, the results of Sections 3 and 4 are the essential
ingredients of the proof of asymptotic completeness (for arbitrarily
large initial data).

2. THE CONFORMAL CONSERVATION LAW.

In order to convert the formal derivation of the conformal conserva-
tion law sketched in Section 1 into an actual proof, it is convenient
to apply the following general method. One first reqgularizes the equa-
tion by introducing suitable cut-offs. The solutions of the regularized
equation have sufficient smoothness and decay at infinity in space to
allow for the proof of a regularized version of the conservation law
by the same computations as used in the preceding heuristic derivation.
One finally removes the cut-offs by a limiting procedure.

The regularization uses a local cut-off h and a space cut-off g at
large distances. The cut-off h is taken as a non negative even function
in %i?lfl), such that |h||, = 1, and the cut-off g as a function in
%ﬂ(ﬂf‘) with compact support and such that 0 < g < 1 and g = 1 in some
region around the origin. Because of the finite propagation speed for
the equation (1.1), the space cut-off can be introduced either in the
initial data or in the interaction. We choose the second possibility
because of the intrinsic interest of localized interactions. We replace

the equation (1.1) by the regularized equation
0@ +hxgfh*%Y) =0 (2.1)

and consider the Cauchy problem for (2.1) with regularized initial data
(90, ¢ (0)) = (b »¥Py, h*yy).

The limiting procedure consists in letting h tend to a § function

1
described above; for any positive integer j, we define hj(x) = jnhl(jx)

and g tend to 1 in the following sense : we choose fixed h, and g, as

and gj(x) = g(x/3), we take h = hj' g = gj and we let j tend to infinity.
The solutions of the regularized equation (2.1) tend to solutions of
(1.1) in a sense which makes it possible to take the limit in the con-

)

servation law, provided the interaction f and the initial data (tPO, ¢0

satisfy suitable assumptions. These assumptions basically ensure that

(i) the Cauchy problem for (1.1) can be solved in a unique way, and
(ii) the conservation law has a meaning.
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The natural condition on (¥ ,y) for the energy E(Y¥ ,y) and the
kinetic part of the conformal charge Qo(t, ¥,V) to be defined is that
(P,p) el = z, 8 Iy, where

(e 12 v, r v 1%} (2.2)

™
It

and

{weL2 i T U)eLz} . (2.3)

3]
It

The spaces Zl and ZO are Hilbert spaces with norms

el + Ivels « Ik vel

HtP; Zl‘

v 2l = WIE + lwoll .
We shall consider only initial data (4(’0, wo) € I.

The assumptions on the interaction f consist of those required to
solve the global Cauchy problem with uniqueness (namely (A1) and (a2,
a, b) below) supplemented with an assumption which prevents 9, (t,9) to
tend to -« while Qo(t,KP ,¥) tends to +» for fixed Q(t, ¥ ,y) (namely

(A2c)). They can be stated as follows.
(aAl). £ « (@l((t, C) and £(0) = 0. If n > 2, f satisfies the estimate
- P,-1 p,~1
|£'(2)] = Max(|3£/52],|0£/0Z]) = c(z| > + |z| 2 ) (2.4)

for some p,, p, with 1 < p, < p, < 1+4/(n-2), and all z<C.

(A2). (a) There exists a function V ¢ % l(0:, R ) such that v(0) = 0,
V(z) = v(|z|) for all z e C , and £(z) = 3V/az.

(b) V satisfies the estimate
V(R) 2 - CR (2.5)

for some C 2 0 and all R = 0.
(c) V satisfies the estimate

R2+4/n

V(R) 2 = C (2.6)
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for some C 2 0 and all R = 0.

We can now state the conservation law, first with the cut-off g

still included, and finally with both cut-offs removed.

Proposition 2.1 Let f satisfy (Al) and (A2 a, b), let (((70, Yole I,
let t; ¢ R and let Y be the (unique Hl—vaJ:ued) solution of (1.1) with
initial data (), ¥,) at time tg. Then (¢,¥) « € (R, ) and for all
s, t ¢ R, the following identity holds:

Qott, @), (e + [axe??) g V(@) =

0y, @), ¢ () + [ax(s?e?) g V(G (s)
) .

+ jﬁZTdTJI dx{g W(P(t) + (x.Vg) V(¥ (1))} . (2.7)
]

Proposition 2.2 Let f satisfy (Al) and (A2 a, b, c), let (‘PO, bgle I.

Assume that

fdx r? |V((PO)| < e

Let t0 ¢ R and let Y be the (unigque Hl-valx.}ed) solution of (1.1) with
initial data (CPO, Y¥,) at time t,. Then (@, 9) ¢« (R, %), the integral
fdx r2 V(YY) is absolutely convergent for each t ¢ R and continuous
with respect to t, and ¥ satisfies the conformal conservation law (1.6)
- (1.11) for all s, t ¢ R, i.e. (2.7) with g = 1.

We refer to [ 8], Section 2 for the details of the proofs.

3. CONFORMAL ESTIMATES

In this section, we derive some a priori estimates involving the
kinetic part of the conformal charge, thereby providing an analogue of
Lemma 1.2 in the case of the wave equation. The starting point is the
expression (1.12) for QO(t’ ©, V), where we regard t as a real positive
parameter and ¢ , Y as two independent functions in Z, and ZO respective

-ly. We use two different methods.
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The first method exploits Lemma 1.l1. For that purpose, we first

rewrite Q0 in the form
2 ~1 2
0y (t, @ ,¥) = [levep + anz + |ks¥P-w tvwllz (3.1)

with o = vY-A , after an elementary computation involving the commutator
of x with « . We then recombine Y and ¥ into two new functions W+
which would be the positive and negative frequency parts of ¢ if ¢

were a solution of %= 0 and ¢ its time derivative, namely

@, = (Pxin ly)/ 2 . (3.2)

One can then rewrite Q0 as

2 1 txe = 1E7)@, |2 (3.3)

+

Qo (tr @ 1 ¥)

. 2
2 I |xwexp(xiwt) ?+H2 (3.4)
: £
where we have used the identity
-1

exp(Fiwt) x exp(tivt) = x+1i tw "V . (3.5)

We can then prove the following estimate.

Proposition 3.1 Letn 22, 2 < & < 2,, and (¥, y) e I. Then @ and
w-lw belong to ¥ and satisfy the estimates

1@ 1y, o™t ull, < c e e o, /2 g (¢, ¢,y 1702))/2
(3.6)

where E, (¥ ,¥) = le@ + HV?Hg

Proof. We express ¥ and ¢ in terms of ¥, by using (3.2). We then
estimate ¢, in Ll by Lemma 1.1 with a(2) = 1 + §(s) and obtain

-y (2 tiwt
lell, = c e ) jla et o |

<c t-Y(Q,) Hweiiwt (‘Png(l) waeiiwt LPiHé—OL(JL) (3.7)

where the second inequality is obtained by applying the H&lder inequali-
ty in the form
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Ix Ny s i@+ 72 1@ + 253,

with 1/s = 1/m + 1/2 and optimizing with respect to a. The result then
follows from (3.4), (3.7) and the fact that

2
Bol @ ¥ =22 llw .15

Q.E.D.
Although Proposition 3.1 is a result of the type we are looking for,
it has some shortcomings. The limiting case & = 2 is excluded by the
use of the Hdlder inequality, whereas (3.6) for £ = 2 and‘n 2 3 is simply
the Hardy inequality.‘Furthermore the upper limit 2 < 21 is not optimal,
as one expects the result to hold for all % ¢ 2*(1 < @ for n = 2). The
upper limit £ = 2* for n = 3 is sharp however, as shown by the following

argument : for @ = ‘P+, (3.7) takes the form

l

¢t Il @ 12 i+ semy @ e )

A

e,

1-0(%)

1-5 (1)
i 2

ct e 13 e + 1 @ |

[l

which for smooth and rapidly decaying ¥ implies || ¢ H% = 0 and therefore

@ =0 if 6(2) > 1, or equivalently & > 2%, by letting t tend to infinity.
The second method will remedy the previous defects. We restrict our

attention to the case n 2 3 and refer to [8] for a detailed treatment

of the case n = 2 which has additional complications in the form of

logarithmic factors in the estimates. Since we want to estimate ¢ in

terms of Q0 which contains another function ¥ independent of ¥ , we

lose nothing by first minimizing Q0 as a function of y. We introduce

an auxiliary radial function h ¢ © ((0, »); R) and we use the notation

% =x/xr, 8 = (t2+r2)1/2.

1 ©
Lemma 3.1 Let n = 3, let h ¢ €((0, »); R) with h and rdh/dr in L”(R")

and let ¥ ¢ £, Then

- - 2
0 (erP) = TnE Qg (e, @, W) = lex™ L5

v t%x?) 299 —(m-1-82 £ T2 myr @ }||§

+ <@, {82 r72 h(n-2-h) + (£2 £72-1) rah/dr} ¥ > . (3.8)
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We refer to [8] for the proof of Lemma 3.1, which is an elementary
computation since Qo(t, ¥ , ¥) is a quadratic function of . That lemma
provides a control in the L -norm sense of (i) the angular derivatives
of ¥ with an extra factor 8/r, (ii) the radial derivative of ¥ with
a factor which vanishes on the light cone, since

67l t2-r?|2.v ¢ ~ |t-r| a¥ar
(by choosing h = (n-l)rz/ez), and (iii) ¥ itself with an extra factor
6/r (by choosing h = (n-2)/2). The last result is a variant of the
Hardy inequality.

We can now state the main result of this section, which improves

over Proposition 3.1.

Proposition 3.2 Let n 2 3, let 2 < & < 2*, let & = Max (%, 2n/(n-1)),
let a 20, let £t > 0 and Y ¢ X

- Then ¢ satisfies the estimate

[(ox™ 1) 18 (1) g7 (1) (=112 0 (2) < S

2
|+ a) ||2 < €y

< eI e L S+ JlorTh @ g5 Y (M2

X

- d 2 2 2
s e o T epra &L |2 ye /2

A

(1-a(2)) /2 2 (1 4P [12,0(k) /2
RN S (e, @) +a” || S22 (3.9)

where the constants C0 and Cl depend only on n.

The proof is a complicated variant of the elementary prcof [1] of
the usual Sobolev inequality || u |l,* < C [[Fu|l,. In the latter one starts
with the estimates

lvix)| < (1/2) fdx5|aj Vi, x, e, x|

for 1 < j < n, one applies Hdlder's inequality repeatedly, one substi-

tutes = |u|p for a suitable p, and one estimates the derivatives of

v
u in Lz. Here we proceed similarly, but we use angular and radial instead
of cartesian coordinates, and we introduce suitable weight factors in

the starting point inequalities so as té reconstruct the weight factors
occuring in Qm(t,Q ) at the end of the computation. Eventually the
angular derivatives of Y are controlled by the term (6/r)L ¥ in Qm’

and the radial derivative is controlled by the radial term in Qm
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(which yields (3.9) with a = 0) or is left untouched (which gives the
term with a in (3.9)). We refer to [8] for the details.

The estimate (3.9) for ¥ is stronger than the estimate (3.6)
of Proposition 3.1 in every respect. In fact, the allowed values of %
range over the interval [2, 2¥1 for (3.9) instead of the interval
(2, 11] for (3.6). In the left-hand side of (3.9), the Ll-norm is im-

proved by various additional factors : the factor (er_l)l—s(l)

yields
the Hardy inequality, the factor SY(Z) yields the time decay t-Y(Q)and
an additional decrease at infinity in space; finally the factor

(e—l I t2—r2| )Ct (2,)

It is interesting to remark that the norm that appears in the

yields an additional decay away from the light cone.

left-hand side of (3.9) has some similarity with the norm used in [15]
for n = 3 to prove the existence of global solutions for small data or
equivalently the existence of dispersive solutions of the equation (1.1)

down to the optimal values p;(3) = 1 + V2, namely (see (4.9a) of [151])
ll(t+r) (14 |e-x[)P72¢ |

We finally remark that the estimates of Proposition 3.2 still
hold if @ is a scalar field minimally coupled with an external Yang-
Mills field, with the ordinary derivatives replaced by covariant deri-
vatives. That property follows from the fact that for any function v
with values in the space of Yang-Mills potentials or in the space rele-

vant for the coexisting scalar fields, the following inequality holds
9. |vl = |D v
vl < ol

where |.| denotes the norm in the relevant space, and Du the covariant

derivative corresponding to BU (see [5], especially the Appendix).

4. TIME DECAY

In this section, we apply the previous results to the derivation
of time decay properties of the solutions of the equation (1.1). Those
decay properties will result in a straightforward way from combining
the estimate of Proposition 3.2 (for n 2z 3) and its analogue for n = 2
with boundedness properties of Qo(t,ﬂP ,@ ), and we concentrate our
attention on the derivation of the latter. We assume throughout this
section that (‘Po, ¢0) ¢ Z and that f satisfies the assumptions (al)
and (A2). We need in addition a repulsivity condition (A3)
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(A3) f satisfies the inequalities

0 < (p;+1) V(z) < 2 Re z f(z) (4.1)
p1+1
for all z ¢ € . (Equivalently, V(R) = R v(R) where v is a non negative

. . +
non decreasing function from R to R).

In the case of a single power interaction (1.2) with p = Py (A3) simply
says that X 2 0. Note also that (A3) implies (A2 b, c).
We first consider the easy case where p; t 1 2 21
Proposition 4.1 TLet n 2 2, let f satisfies (Al), (A2) and (A3) with
pl+l > 21. Let ( ?0, wo)e Y , and let (W,‘b) be the solution of (1.1)
in (R, £) with initial data (€4
Proposition 2.2. Then Qo(t,Q ;%) is uniformly bounded in time

wo) at time zero, as described in

N

Qp(t, P, ¥) < Qlt, ¥, 9) < (0, Py, V)
2 2 ) 2
I vglly + [lev Pl + fdx v, . (4.2)

Proof. The result follows immediately from the fact that under the as-
sumption (A3), one has W(*¥) < 0 and t R(t,¥) < 0 (See (1.10)-(1.11)).

Q.E.D.
We next turn to the difficult case p1+1 < ll. We assume never-
theless that P, 2 1 + 4/n, a condition which is satisfied by the
values of p, pl(n) and pz(n), for all n. That condition also makes the
assumption dex r2 V(“Fo) in Proposition 2.2 unnecessary. We need a

slightly stronger version of the repulsivity condition (A3)

(a3') f satisfies the inequalities

p,+1 _
clz] s (pyt1) V(z) < 2 Re z f(z) (4.3)

p,+1
for some C > 0 and all z ¢ € . (Equivalently, if V(R) = R ' v (R)

one assumes in addition that v (0) > 0).

We follow the method sketched in the introduction. The first task
consists in extracting some preliminary decay from the conservation
law (See (1.29))
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Lemma 4.1 Let n > 2, let f satisfy (Al), (A2) and (A3') and let
U = n+l —(p1+1)(n-1)/2 2 0 (4.4)

Let ( ?0, wo) e L, let t0 e R and let (9,¥) be the solution of (1.1)

in € (w ,Z) with initial data (‘Po, wo) at time ty. Then
m(t) = Q(t,‘(’.@) + E(*P,‘i’) < m(0) (1+t%)H , (4.5)
2. u-1
Jax vie) < mo) (1+¢?) , (4.6)
1/(p;+1) 1-26 (p, +1)
(a+{th . (4.7)

K483 le+1 < C m(0)

Proof. From the conservation law and from (A3), we obtain the integral
form of the differential inequality

am/dt = 2t | dx W(¥) < 2ut Jax v(¢)

2pt (1+t24) 7L m(e) (4.8)

IA

which implies (4.5) and therefore (4.6). Finally (4.7) follows from
(4.6) and (A3')
. Q.E.D.
In order to estimate Qo(t,‘P,lP), we first rewrite it by using
(1.12) as

Q0 (e, P, ) = M2+ LY+ DI = L o I (4.9)

where in addition to the angular momentum L = xxV , we have introduced

the operators

M

tV+ x(d/dt) (4.10)

o
fl

x .V+ t(d/dt) + n-1 , (4.11)

and the sum in the last member of (4.9) runs over A = L, M, D, with
¢A = AY¥Y . The operators L, M and D are the infinitesimal generators
of space rotations, of pure Lorentz transformations, and space-time
dilations respectively. The expression (4.9) is the analogue in the
NLW case of the expression Q. = (1/2) [LJW|§ in the NLS case (see
(1.8%

nerator of pure Galilei transformations. From the transformation

and (1.21)). Note that in that case, J is the infinitesimal ge-
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properties of the free wave equation, or more simply from a direct

computation, it follows that
[0, A1 =0 for a =L, M ; 0D = (D+2) O , (4.12)
so that the functions ¢A satisfy the equations

O0¢, +a2af=0 foraA=1L, M,

A
(4.13)
06, + (D+2)F = 0
The interaction term in (4.13) can be rewritten as
_ o 3f - 3f _ . _
Af—¢A3‘P+¢A'ﬁ—¢Af(‘P) for A L,M
(4.14)

(D+2)f = ¢D £'(¥) + (n+l)f -(n-1) @ £'(¥P).

The Cauchy problem for (1.1) with initial data (‘Po, wo) at time

zero can be rewritten in the form of the integral equation

£
@ty = ‘P(O)(t) - erT R(t-T)E(P (1)) (4.15)
0
where
@O (r) = k(t) Py + K(B) Y, - (4.16)

Similarly, the functions ¢A(t) satisfy the integral equations

(0)

op(E) = dp ‘jvdT K(t-1) ¢, (1) £' (¥ (1)) for A =L, M
o}

(0)

and a similar equation for ¢D’ with the functions ¢

(0)

expressible in
terms of (?0 L4 ) One sees easily that ¢ is bounded in L2 uniform-
ly in time (with an addltlogal Log t factor for ¢éo)if n = 2) and ‘it
remains to estimate ¢A in L” by using the integral equations. The func-
tion £'(Y¥) in the integrand is estimated by the use of the estimates
(4.5)-(4.7) and possibly additional estimates obtained therefrom by
substituting them in the integral equation (4.15)vfor ¥ . In space
dimension n 2 3, the method requires the use of homogeneous Besov spaces
[ 2] and of estimates of the operator XK(t) acting between such spaces.

It is reasonably simple in dimensions 3 and 4. The case of higher di-

mensions is more complicated and has not been worked out in details.
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Here we only state the final results for n = 2, 3, 4, and refer to [8]
and [ 9] for the details of the proofs in dimensions n = 2 and n = 3,
4 respectively. In the latter case, one needs a slight reinforcement
of the assumption (Al), in the following form

(A1') £ ¢ ng( C,C), £(0) = £'(0) = 0, and £ satisfies the estimate

: _ - p,-2  py~2
[£"(2) | = Max(|3%£/02%|, |0%£/0z 22| ,|3%£/0%2|) < c(lz| * +14 2 )
for some Pyr Py with 1 < Py < P, < 1 +4/(n-2) and all z ¢ C.
Proposition 4.2 If n = 2, let f satisfy (Al), (A2) and (A3') with
2 + /5 = p2(2) < pl(s 5). If n = 3, 4, let f satisfy (Al'), (a2) and

(A3') with p,(n) < p,(s1 + 4/(n-1)) and p, < p, < 1 + 4n [(n=2) (n+1)17".

Let (Pg, %) eI, let t; ¢ R and let (P,9¢) ¢« €(R,5) be the solu-

tion of (1.1) with initial data ( Wo » ¥y) at time t,. Then
Qp(t, ®,®) < C(1 + Log,|t])? ifn=2 |,
Qo(trLPltP) < C ifn=3,4

The time decay properties of the solutions of (1.1) follow from
Proposition 3.2, its analogue for n = 2, and Propositions 4.1 and 4.2.
In particular all solutions of (l1.1) with initial data in I satisfy
the optimal decay (1.15) for 2 s < 2%under the assumptions of Proposi-

tion 4.1 for n =2 3 and of Proposition 4.2 for n = 3, 4.
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In this article we give a short introduction to white noise anal-
ysis, with special emphasis to generalized and positive generalized
white noise functionals and the causal calculus. These will be the
main ingredients for the discussion of Dirichlet and energy forms in
this framework as examples of application [8,9]. For more details on

white noise analysis see e.g. [6,7,11,12] and literature quoted there.

1. White Noise

For simplicity we shall work in this article mostly with white noise
with one dimensional time parameter. The generalization of notions
and statements to higher dimensional "time" will be obvious. Thus we
consider the Gel'fand triple

S'(R) & LY(R,dat) o S(R) (.1

which by Minlos' theorem [3,5] induces a Gaussian measure du on the
o~-algebra B over S'(R) generated by the cylinder sets such that
for all £eS(R)

[ Q1<x,8>

j du(x) = e 1/2(8.E) (1.2)
S'(R)
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where we denoted the pairing of S'{(IR) and S (R) by <-,+> and

the Lz(EL dt) scalar product by (+,+). In fact one can prove that
duy is supported by the Sobolev space S_a(HL dt), o > 1/2, which is
defined as the completion of S(R) under the norm

WEN_, = HIH “£ll (1.3)

where the last norm is the one of LZ(IR,dt) and H 1is the Hamilton-
ian of the harmonic oscillator: H = --dz/dt2+t2 +1 (we have added 1
to the usual Hamiltonian for later purposes).

For p 2> 1, we shall denote the Banach space LP(S'(EQ, B,du) by
wPy.

It is well-known (e.g. [5]) that (LZ) is isometric to the sym-

metric Fock space over L2(IL dt) (complexified)

2 * 2/\
1) ~ & L°(R%,n!d"t) (1.4)

n=0

~

where - denotes symmetrization and if n = O we mean ¢. Therefore

(L2) admits a direct sum decomposition (L2) = @& H(n), and H‘n)
n=0
is called the n-th homogeneous chaos. Elements w(n) in H(n) can
be visualized in the following way
o™ (x) = J[ £™ () :x®: ()d®, x € SR (1.5)
=°
where f(n) € L2(Pn,n!dnt) and : : denotes a "Wick ordered prod-
uct”. It is defined recursively by
:x°: =1
x:(t1) = X(t1), ty € R (1.6)
®n _ ®(n-1)
x (£) = x(t):x (tys rEoq)
n-1
_ ®(n-2)
- I 8(t -t ):x 2(tyr.. ,)/k, vt y)
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(t = (t1""’tn))' Then it takes a moment's thought to see that for

€ S(BJU (1.5) is well-defined, if one interpretes the integral

A
(n) € LZCRn) (1.5) has to be in-

£

on the right as dual pairing. For £

terpreted as the (Lz)-limit of expressions like (1.5) with f(n) ap-
proximated by functions in S(RY). In terms of ¢ = % m(n) € (Lz),
n
w(n) as in (1.5), the isometry (1.4) reads
= 2
hen? , = £ nrpe™y? (1.7)
(L) n=0 L°(R ,dt)
Let us now introduce a useful transformation on (Lz) [11]:
(S0) () 3= Jf o(x+E)du(x), £ € S(R) (1.8)
One readily checks that w(n) in (1.5) transforms as:
o™ @) = [ ™ e e (1.9)
&Y

A

(n) ®n

€ (L2 (R,dt))

on (&,...,E) € (LZ(EL dt)Pn; in other words, we identify Sw(n) in

a unique way with an element in (LZ(EL dt))en and therefore the range

which we may view as the evaluation of the tensor £

of S 1is the symmetric Fock space over L2(1R,dt): S implements the
isometry (1.4).

We conclude this subsection by giving attention to a special element
. 2 ) . (1)
in (L"), in fact in # [0,t)

stood as an (Lz)—limit, s.a.) which is a version of Brownian motion and

, namely B(t;x) = <x,1 >, t > 0, (under-

due to this relation we interprete é(t;x) = x(t) as the time deriva-

tive of Brownian motion.

2. Generalized Functionals

There are many motivations for the introduction of generalized
functionals of white noise, but here we confine ourselves to mention
that in section 4 we shall construct energy forms based on certain pos-
tive generalized functionals. For other motivations we refer the read~-
er to the literature quoted in the references. Also, it should be

pointed out that the type and construction of such spaces of generalized
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functionals - like in finite dimensions - will vary with the applica-
tion one has in mind. For our purposes it is convenient to use a con-
struction based on second quantized operators (cf. also [11,15,19]).

Consgider again the symmetric Fock space over Lz(EL dt):

F= 0 @R, at))®" (2.1)
n=0

(which we identify with the r.h.s. of (1.4)). If A is a linear, clos-
able operator we may define it second quantization T'(A) on F by
setting

T (a) ~ = p%n (2.2)

(L2 (w, at))®"

and extending (2.2) linearly [16]. We choose A = H, H being the
Hamiltonian of the harmonic oscillator (cf. section 1). Note that

T (H) (2.3)

(L2 (R, at))®" -

The isometry (1.4) defines now a unitary image of T (H) on (Lz) and
we denote it by the same symbol for simplicity. Moreover we set for
p Eimo

(s,) == D(r () e w?) (2.4)
p(r (=) denoting the completed domain of r(#P) . Clearly (Sp) is

a Hilbert subspace of (L2). Also it is not hard to see that the sys-
tem of norms (II-II2 p; p € No) of the spaces (Sp) is a compatible
14

system (see e.g. [3]). Let us define the space
(8) == n (8_) (2.5)
pE]No
as the projective limit of the family ((S_); p € No). (8) is a

countably Hilbert nuclear space [3,11]. 1Its dual is given by [3]

($)* = u (s_p) (2.6)
pE]NO
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where (S_p) is the dual of (Sp). We have therefore obtained a nu-

clear rigging

($)* o (L) & (3) (2.7)

and it is easy to check that (8) 1is dense in (L2) (cf. [8] for an

argument). White noise functionals in (8) are called testfunctionals,

while those in (§)* are called generalized functionals. The dual

pairing between (8)* and (S) will also be denoted by <-,->.
A very useful property of (S) is [8,11]

Lemma 2.1:

(§) is an algebra.

In order to give the reader an intuitive idea about the space (S),

we remark that in the representation (1.5) of w(n) belonging to (S)nf#n)
A

f(n) is a member of S(RM) (symmetric Schwartz space) and Hw“”ll(Lz)

falls off in n faster than any exponential.

From the last remark it should be clear that there are elements in

(S)* which correspond formally to functionals like (1.5) with f(n)

€ S'émn),e.g. :x(t)™: and the like.

Another class of functionals in (8)*, so-called Gauss kernels,
will be described next. This class will later provide the first exam-
ples of singular measures which yield energy forms.

Formally speaking we want to construct elements like
@un(x) = exp(~1/2 <x,Kx>) (2.8)

in (S)*, where K is some operator on LZ(HL dt). In [18] (2.8) had

been studied for K of Hilbert-Schmidt type with the following result:
1

if K > =1, IK(+K) Iy g.< 1 and K is trace class, then (2.8) ex-
ists (as it stands) in (L2). If the trace class condition is drop-
ped, & belongs after a multiplicative renormalization ("division by

un
the expectation") to (L2): we denote this element by

d(x) = N exp(~ 1/2 <x,Kx>) (2.9)

For more general linear selfadjoint operators K on LZ(Eth) we
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proved in [9] the following

Lemma 2.2:

Assume that K > -1 and that for some p € IN

(1) HH—pK(1+K)_1H—pHH g, <1 (2.10.a)

1) PR TP, < w (2.10.b)

Then there is an element ¢ in (8)* (in fact in (S_p)), formally

denoted as in (2.9), with characteristic functional

1

<®, exp i<: ,E>>=exp(-1/2(5, (1+K) " '£)) (2.11)

(£ € S(R)).

Remark: Without condition (2.10.b) this has been shown in [9] for K
with K > -1+4+¢, € > 0. The above lemma can be proved on the basis of

this result by a simple limiting argument, which makes use of (2.10.b).

Gauss kernels have an important property: they are positive in
the sense that they map every positive (a.c.) element in (8) into a
positive number. Elements in (S)* with this property will be called

from now on positive generalized functionals. A useful theorem about

positive generalized functionals is found in a paper by Yokoi [19]:

Theorem 2.3:

If ® € (S)* is positive, then there exists a unigue finite posi-

tive measure v on B so that for every F € (S)

)
<d,F> = {%(xmv@ (x) (2.12)

o
where F 1is the continuous version of F.

3. White Noise Calculus

This subsection will be rather sketchy, since by now the white
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noise calculus can be considered as being well-established. For further
details we refer the interested reader to [5,9,11,12] and references
quoted there.

The idea is to regard the generalized random variable x(t), i.e.
white noise "at time t", as a continuously indexed system of coordi-
nates and to build a differential calculus with these coordinates. Thus

we introduce a differential operator 3t = 3/9x(t) as follows

Definition 3.1:

On (8) we set

| §
8, =8 ST s, t € R (3.1)
where §/8E£(t) is the Fréchet functional derivative, and S is the
transformation (1.8).

With this definition one can check that Bt is indeed a deriva-
tion on (§) (i.e. it admits the Leibniz rule) and also one can prove
a chain rule [14]. Of course the domain of definition of at can be

largely extended. Here we confine ourselves to mention the following
results

Lemma 3.2:

(1) at maps (S) continuously into itself
(ii) at is an annihilation operator: if we denote Hin) := (8)
n H(n) (cf. section 2), then
o HM o wTD (3.2)
The adjoint operator 3: of Bt is defined as that
<3:®,F> = <¢,atF> (3.3)

for all & € (S)* and all F € (S).
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(1) az maps (S)* continuously (in the weak-*-topology) into itself

(ii) 8: is a creation operator: denote Hih) = (an))*, then

ax, g™ L gt

e (3.4)
(iii) we have the canonical commutation relations

[9,,8%] = 6(t-s) (3.5.a)

[3,,0.] = [3},3%] =0 (3.5.b)

(iv) multiplication by =x(t), t € R, is defined as a mapping from
(8) into (S)* by

= ok
x(t)- = Bt + at (3.6)

Formula (3.6) is the starting point of a reformulation of stochas-
tic integrals within the white noise calculus, which leads to important

generalizations of the standard stochastic integrals, cf. [13].

4. Energy Forms

In this subsection we shall sketch how energy forms [2] can be
handled within the framework of white noise analysis. For more details
and references for other approaches of energy forms in infinite dimen-
sion we refer the reader to our paper [8]. A review about the finite
dimensional case is given in [17].

Roughly speaking the main idea is to generalize the finite dimen-

sional form

c(£,9) := J (VE) () » (Vg) (x) dv (x) (4.1)
n

R
where dv 1is some positive o-finite measure - the "ground-state mea-
sure" - to an infinite dimensional situation. If e in (4.1) is clos=

able, then it defines uniquely a selfadjoint positive operator H on
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LZ(EJE dv) [10]. This representation of quantum mechanics allows for
constructions of Hamiltonians % which in the Schrddinger representa-
tion with H = -A+V would have very singular potentials V. Thus
this strategy seems promising for quantum field theory.

We shall work in this section with white noise with d-dimensional
time parameter, i.e. with the basic triplet

s'rY) o tPmdan o smY (4.2)

and without further mentioning we shall use the notions introduced in
the preceding sections in this context.

From how on let & be some positive generalized functional in
(S)*. By theorem 2.3 ¢ defines a measure on S§' URd) which we shall
denote by &(x)du(x), du being the white noise measure, although this
measure is in general not absolutely continuous with respect to du.

On the basis of lemma 2.1 and lemma 2.2 (cf. also the remark after
lemma 2.71) it is not hard show that the following lemma holds.

Lemma 4.1:

If F,G € (S), then also VF-VG € (8) with

VF i= (3,F; t € rY) (4.3)

and

] f
VF+VG J dt(stF)(atG) (4.4)

ZRd

Therefore we may define the following sesquilinear form on (8):
e(F,G) := <&,VF-VG> (4.5)

. = {(VF(X))'(VG(X))¢(X)dU(X) (4.6)

Equality (4.6) follows from theorem 2.3 (upon identification of elements

in (8) with their continuous representant). Since (8) is dense in
(L2)<I> 1= L2(S'(Eﬁd, ¢du), € is a densely defined, symmetric form on

2
(L )¢.

Next arises the question of closability of the form € in (LZ)Q,
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which would guarantee the existence of a unique selfadjoint operator
B on (L2)q> with

E(F,G) = (F,HG), (4.7)
~1/2, _ - -
for all F,G€ D(H ) = D(e), where = 1is the closure of ¢ and
(',')<I> is the (L2)¢ scalar product, [10,p.322].

Definition 4.2:

Let ® € (S)* Dbe positive. & is called admissible iff its asso-

ciated symmetric form e (cf. (4.5)) is closable.

We can prove the following criterium [8,9]

Theorem 4.3:

If & € (S)*, positive, is such that for every t € R 8t¢ = B(t)¢
with
JrB(t)T](t)dt € (s) (4.8)
for every n € S(ﬂ#i),then ¢ is admissible.
Example 4.4:
The Gauss kernels of section 2 are admissible, if the operator K
(cf. (2.9)) on ,Lz(]Rd, dt) is such that K 'maps S(rY)  into itself.

Specially, one can choose K==(—A+m2)1/2, m2

> 0. As is shown in
[9], this provides a representation of the free relativistic massive
boson field in d space dimensions as a generalized white noise func-

tional.

For a criterium in the case that the measure induced by ¢ is

absolutely continuous w.r.t. du, we refer to our paper [8].

In [1] also non-Gaussian measures will be treated.
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Principles of Solitary Wave Stability

Luis Vazquez
Dpto. de Fisica Tedrica, Universidad (omplutense
28040 - Madrid, Spain

1. Introduction

A Tot of physical systems can be described by nonlinear differential equations
which admit solutions in the form of so-called solitary waves. By a solitary wave
we mean a localized wave which keeps its form or shape. Physically, a basic problem
is to understand the role of these localized nonlinear objects. One of the most im-
portant and natural requirements for solitary waves is the condition of stability.

For example, in particle physics classical nonlinear wave equations form a basis
for the construction of quantum objects. In all investigations the first order
approximation deals with the equations as if they were describing classical field
configurations, rather than quantum operator fields. In such a case the demand for
classical stability is motivated by the requirement that the corresponding quantum
state should be stable.[ J ]

Unfortunately the meaning of stability is not unique in the sense that there exist
a lot of different definitions (o% notions) of stability used in the literature and
the information about the relations between these concepts of stability are very mea-
ger. The aim of this contribution is therefore to give a brief survey about the
stability problem and to report on recent progress in this field. Furthermore using
simple conditions we prove some relations between several concepts of solitary wave
stability.

In Section 2 we present a general framework for the stability of solitary waves.
We restrict ourselves to Hamiltonian systems since the Hamiltonian structure will
allow to extend all the stability methods developed in classical mechanics { i.e.
for systems having finite degrees of freedom) to systems with infinite degrees of
freedom.

In Section 3 we study the relations between several concepts of stability and
prove some simple theorems on them. In particular, we are interested in the relation
between energetic and nonlinear stability.

In Section 4 we report on recent numerical work concerning soliton stability in
nonintegrable systems.
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2. ncepts of Stability

5k pointed out in the introduction we shall consider Hamiltonian systems only. In
the standard form they can be written as

(H) T - JE'

on a function space (e.g. a Hilbert space) where E denotes the energy, E' its deri-
vative ‘With respect to u' and J is a skew-symmetric linear operator.

Typical examples for (H) on an infinite dimensional space which arise from classi-
cal field theory are nonlinear Klein-Gordon equations

2
(NLKG) Pt + 0 - g(lul9y =0 onRM
nonlinear Schridinger equations
(NLS) o, + 8¢ + f(lo]90 =0  onr"
and nonlinear Dirac equations
(NLD) iy ERY +.1y Qv - mp + 55 =0 onR

1 <k <N, T =celement of the y-algebra.

A interesting property of all these equations is that they possess additional
symmetries like translation invariance and (global) gauge invariance. These symme-
tries generate additional conserved quantities T1ike momentum (coming from trans-
lation invariance) and charge (coming from gauge invariance). Therefore we may assume
that (H) is invariant under certain group representations. We follow now a recent
paper where a rather general stability theory has been presented [GSS]. We assume
That (H) 1is invariant under a one-parameter group of operators U(-)(an extension
to more dimensional abelian groups seems not to be difficult). Let Q be the conserved
quantity associated to U(-). Asolitary wave solution is a solution of the form

(2.1) u(t) = U(wt)d,

It may be viewed as a critical point of the energy E subject to constant Q. This
leads to the definition of energetic stability.

Definition 1: Asolution of (H) given by (2.1) is called energetically stable if
its stationary part ¢w is a local minimum of the energy E subject to constant Q.
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A sufficient condition for energetic stability is that the linearized operator
H, = E"(¢w)-wQ(¢w) is rionnegative. One should note that Hw cannot be positive
since the symmetry causes a nontrivial nullspace (see [6551).

Orbital (or nonlinear) stability is defined as follows.

Definition 2: The solution U(mt)¢w is called orbitally stéb]e if for any tubular
neighborhood of Ow = {U(s)¢w , 5 real}l there exists a neighborhood V of N
such that all trajectories u(t) of (H) which start in V remain in the given
tube for all time. Otherwise we call U(wt)$ ~ unstable.

In most cases one uses energetic stability to prove orbital stability by taking
the energy as a Liapunov functional [Be] but energetic stability is not a necessa-
ry condition for orbital stability [JR,SV] .

Another method to study the stability properties of solitary wave solutions is
to linearize the system around a solitary wave U(wt)¢w . The Tinearized dynamics
is then described by the equation

dw _
(Hyip) T -

with H =E"(¢,) - w Q" (s,) -

JH w
w

Definition 3: A solitary wave U(wt)¢w is called linear dynamically stable if any
solution of the linearized system remains bounded for t >0 .

Unfortunately this definition is not directly applicable since one has to solve
the so called zero-mode problem [ ML]: The nontrivial nullspace of the Tinearized
operator in the case of symmetries will generate solutions which grow polynomial in
time. Physically, however, these zero modes (or secular modes) have no meaning for
the stability properties. Apart from some particular cases [W1 ] we do not have
a rigorous result for the linear dynamical stability.

Physically, an interesting problem is to study the 'collision' of two solitary
waves. [f one interprets solitary waves as particles then the interaction between
two solitary waves yields information on the 'stability' of the considered forma-
tion. If the solitary waves interact elastically then they have (at least asympto-
tically) the same shape as before. In such a case these solitary waves are called
soliton . Mathematically the soliton property is related to the complete integra-
bility of the corresponding field equation. Solitons have been found analytically
by the inverse scattering transform, e.g. for the sine - Gordon equation

(S-G) + siny =0 .

Vet = Yy
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This method also permits an analytically study of soliton interactions.

Unfortunately nonintegrable systems, e.g. the ¢4Fmode1

(o) Py by~ G+ D=0,

abound in physics and the powerful methods available for integrable systems do not
apply to these models.

3. Relations between energetic linear and nonlinear stability

To discuss the relation between energetic and nonlinear stability we start with
a rather general but simple theorem.

Theorem 3.1: Let g be a solution of (H) , i.e. E'(uo) = 0 such that the 1i-

near operator E"(¢o) satisfies
(3.1) <E"(¢,)w,w > > cllwll2 for some ¢ >0
Then ¢0 is linearly and nonlinearly stable.

Proof: First of all we note that (3.1) implies the energetic stability. To prove
the Tinear stability we use the linearized energy < E'@po)w,w:> as a Liapunov func-
tional. The Tlinearized energy 1is conserved for (Hlin) and the norm can be
controlled by estimate (3.1). Each solution of the linearized system remains boun-
ded which implies the linear stability of u,

To prove nonlinear stability we observe that (3.1) 1implies the existence of
€>0 such that

(3.2) E(u) - E(8,) > ¢ Ilu=-g 117

for all u with [lu -¢OII< € . Estimate (3.2) will then imply the nonlinear
stability. o

If there is an additional conserved quantity Q , e.g. the charge, then an esti-
mate of the type (3.1) for all perturbations which keep the quantity Q fixed
will be sufficient to prove nonlinear stability.

To illustrate this fact let us consider the following dimensional Klein Gordon

equation

- 2p
(3.3) Upp = Uy # U= WP U = 0 on R

2

It can be easily checked that for each w with «° <1 equation (3.3) posses-

ses a unique solution {up to translations in space and phase) of the form
iwt

e um(x) with U, symmetric, positive function strictly decreasing on R'

. One

can prove that if
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(3.4) d(w) = [ u P(x) dx

satisfies d"(w) > 0 then u, is energetically and nonlinearly stable.

The energy and the charge associated to (3.3) are given by

1 2 2 1 2p+2
E(usuy) = ?-j g™ + 1™ - ﬁ?T’lul dx
Qusug) = Im [ U ug dx

Indeed in [BSV1] we show that estimate (3.1) is valid for all tangent vectors
of curves (ul(A),uz(A)) which keep the charge fixed and are orthogonal to the or-
bit of u (x)

2

d , 2

@ E(u;(1)sU,(0)) > C(lyy 1P + Ty, 12)
2o 12 ! 2

-4 ui(x)
where Y; =X J A=0 .

Results in the same direction have been obtained for a lot of nontinear field
equations [Be, Bo, GSS, W2] .

Instability results for nonlinear Klein Gordon equation have been proved if
d"(w) < 0 in [SS] .

For nonlinear Dirac equations the situation is much more difficult. Solitary wa-
ves of the Gross-Neve model or the Thirring model are expected to be nonlinearly
stable but as we showed in [BSV2] they are always energetically unstable which can
be traced back to the indefinite 'Kinetic' term in the energy.

4. Soliton stability

We finish our Tecture with a few remarks on soliton stability. As pointed out
in the introduction the soliton stability is related to the complete integrability
of the corresponding wave equation. In such case when the solitary waves interact,
they are always scattered elastically, preserving asymptotically their shape. The
integrability also permits an analytical study of the multisoliton interactions.

{ DEGM]

In many real physical systems the basic models are not integrable, and in other
cases the integrability condition (and then the solitonic stability) is destroyed
due to physical perturbations (impurities, external fields, ...). In certain cases
of small perturbations, the solitary wave interactions can be treated analytically,
but, in general, we must study numerically the dynamics of the solitary waves coll4~
sions. The understanding of the interaction mechanisms can be used to given a mea-
sure of how far is the system from an integrable one. The natural mathematical
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frame of the collision phenomenology would be a KAM theorem for infinite dimensio-
nal systems.

There are many numerical studies, begun in the mid 1970's, about the collisions
of solitary waves in non-integrable systems [AKL,M,CP,CPS] . Here we summarize
some of the obtained results:

(1) Collisions of solitary waves, in one spatial dimension, in confining models
[ST,AKL] : In such collisions new localized objects are generated, which are
pulsating in time, and they appear to be stable.

(2) Collisions of the solitary waves associated to the one-dimensional Dirac field
with a scalar self-interaction [AC] :

i e v-my+2a@y) oy = 0.

The numerical experiments showed inelastic interactions and bound state produc-
tion in binary collisions. Also it was observed charge and energy interchange
except for some particular initial velocities of the solitary waves.

(3) Kink - Antikink (K K) collisions in the one-dimensional nonlinear Klein-Gordon
equations

- 3:
bpp " Og 0 F e =0

=0.

e

¢tt - ¢’xx +sing +2X sin

The following features are observed in the center mass frame (in which a Kink
with velocity V collides with an antikink with velocity - V)

{(a) For lower velocities than a critical value (VC) there is a “trapping" and
an oscillatory state is created.

(b) Inelastic interactions: the final velocity of the solitary waves is less then

their initial velocity.

(c) For well-defined velocities, below Vc , the KK reflect once, escape to fini-
te separation, and finally reflect again before separating to infinity.
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