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A B S T R A C T  

We shortly mention several perturbation problems of classical dynamical systems bY stochastic 
forces. We look more closely to the case of an Hamiltonian system consisting of a particle moving 
in ~ d  under the action of a force derived from a potential V and an additional stochastic force. 
We report on a recent extension of ours with Zehnder of results by Potter, Mc Kean, Markus 
and Weerasinghe. Under restrictions on the growth of V at infinity or attractiveness of the 
force towards the origin we give existence, uniqueness and stability results for the solution of 
the (stochastic) equations of motion. We also give a comparison theorem with solutions of a 
corresponding linearised system, via a Cameron-Martin-Girsanov-Maruyama type of formula. 
We also discuss the asymptotic behavior of the solution for large times, as well as the existence 
of a a-finite, not finite invariant measure, the Lebesgue measure in phase space. 
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1. Introduction 

Stochastic perturbations of classical dynamicM systems arise in various contexts. We would like 
to mention briefly some of them, somewhat related methodologically, and concentrate then on 
the presentation of some new results concerning stochastic perturbations of finite dimensional 
Hamiltonian systems. 

Historically one can trace the origins of the theory of stochastic perturbations of dynamical 
systems in considerations involving random walks and Markov chains on one hand (e.g. in work 
by Bachelier and Markov) and statistical mechanics on the other hand (e.g. Maxwell, Boltzmann, 
Einstein and Gibbs). Work by A. Einstein (1905), Smoluchowski (1905), A. Einstein and E. Hopf 
(1910), P. Langevin (1911), N. Wiener (1923), S. Bernstein, P. L@vy, L. Ornstein-G. Uhlenbeck 
(1930) (cfr. e.g. [DeH-L], [Nel]) was very influential for later developments (they were in fact, 
forerunners of the modern theory of stochastic differential equations). Typically in this work the 
time evolution of position x and velocity v of a classical system, a Newton particle, is considered. 
The evolution is described by equations of the type 

dx v ( t ) ,  d r ( t )  
d--7 = dt = g ( x ( t ) , t )  - 7v(t), (1.1) 

with K(., t) a given (possibly space and time dependent) vector field over the state space ~ a  
of the system, the deterministic force field. 7 -> 0 is a constant (damping). The stochastically 



perturbed system is obtained by adding on the right hand side a stochastic term, e.g. of the 

white noise type, ~ ( t  t), with w(t) a Brownian motion on ~d ,  or more generally, of the form 

(x(t), v(t),~) d~(~) with a a (possibly space and time dependent) d x n-matrix and w(t) a 

Brownian motion on ~n :  

dx  = v(t), dr(t) = g ( x ( t ) , t )  - 7v(t)  + cr(x( t ) ,v( t ) , t )  d~(t)  (1.1)' 
dt dt dt 

Mathematically the discussion of the above equations is part of the theory of stochastic differential 
equations of Ito's or Stratonovich's type (with known rules to commute between the two) (see 
e.g. [Ar], [Ga] for introductions and [Ik-Wa], [ROW] for more advanced topics). 

In the study of properties of behavior of solutions for large times, which interests us most here, 
methods can be differentiated according to whether the damping term is present or not and 
whether a is degenerate or not. For the case with damping term (~, > 0) with a non degenerate 
see e.g. [Kh]. 
For the case of degeneration see e.g. [Ar], [glie]. 
The case 7 = 0 (Hamiltonian conservative systems) is the main topics to be discussed below. 

Let us note however at this point that a more abstract formulation of the problem is to look at 
stochastic perturbations of deterministic systems of 1. order differential equations of the form 

dy(t) = Z (y(t), t), (1.2) 
dt 

with y(t) a/Rn-valued function and fl(., .) a given (time and space dependent) vector field. The 
stochastic perturbations can be of the type 

d~(t) 
(y( t ) , t )  dt ' 

with &(t) a standard Brownian motion in ~m and ~ a d x m-matrix-valued (time and space- 
dependent) function. The stochastically perturbed system is thus of the form 

d~(t) (1.2)' d~(t) = ~ (y(t), t) + ~ (y(t), t) dt 
dt 

An important case discussed in recent years in connection with quantum physics is the one where 
fl is a gradient field Vu, with u built from the real and imaginary parts of a function satisfying 
the SchrSdinger equation and 5~ is a constant (proportional to Planck's constant), in which case 
one can look upon (1.2)' as the equation of stochastic mechanics ([Ne 1,2], [B1CZ]) (we remark 
that (1.1)' is, on the other hand, not of this type). Existence and uniquenes of solutions of this 
equation have been discussed (see e.g. [AHKS], [Car], [Ne2], [BI-Go]), as well as other problems 
like asymptotics for t ---* :t:oc ([Car]), attainability of singularities of fl (see above references 
and [AFKS], [Fu]), and questions related to the physical interpretation of the equation (e.g. 
[DZ], [Tr]). Let us also mention that recently the inverse problem of finding u (i.e. ~) given 
observations outside a bounded region has also been discussed, for the equations of stochastic 
mechanics ([ABKS]). There has also been much work on stochastic mechanical equations for 
motions on Riemannian manifolds (see e.g. [Gue], [B1-CZ], [AB/HK1] (and references therein)), 
as well as on the stochastic mechanical equations for the motion of a (quantum mechanical) 
particle in an electromagnetic field ([Mot]). We also mention a connection between stochastic 
mechanical models with potentials which are Fourier transforms of measures and models of filter 
theory [Are1]. 

Another important case discussed in connection with classical dynamical systems (e.g. engineer- 
ing problems) is the one where the vector field ~ in (1.2)'is such that zero is an equilibrium point 



and there exists a Ljapunov function (see e.g. [Kh]). Also the discussion of the small Y-limit 
has been  pursued intensively, this limit is connected in the case of the equations of stochastic 
mechanics with the semiclassical limit in quantum mechanics (cfr. [Ma-Fe], [A-HK1], [Rel, [Jo- 
M-S], [A-Ar]). We also mention that explicit connection between solutions of (1.2)' and orbits 
of the corresponding classical dynamical system (1.2) has been studied in the case of motions on 
certain manifolds with symmetries (Lie groups, symmetric spaces) (see e.g. [E], [AAHI, [Are2]). 

We also recall that  the case of equation (1.1)' or (1.2)' where ~ and ~ are linear is extensively 
discussed in the literature, see e.g. [H], [GQ] (and references therein) and serves as a standard 
reference case in many issues. 

The case of infinite dimensional state space is obviously more complicated and less results are 
known. For the linear case see e.g., in connection with filter theory, [Ko-Lo] (and references 
therein) resp. in connection with quantum fields [AHKI, [R~I, [Ko]. For the nonlinear case see 
e.g. [AHK2], [A-Rh], [A-Ku]. The stationary case is particularly weU discussed in Connection 
with infinite dimensional Dirichlet forms (see [ARh]). For a recent development concerning a 
four space-time dimensional model for quantum fields see [A-HK-I]. We also mention that the 
equations of hydrodynamics (Euler and Navier-Stokes) with stochastic perturbation i.e. 

du 
-- ( u . V ) u + v / k u + f ,  d i v u = 0  (1.3) 

dt 

t~ = 0 resp. t~ > 0 being the viscosity constant, (with suitable initial and boundary conditions), 
f being a deterministic plus stochastic force, have also been discussed recently in particular in 
connection with the proof of the existence of invariant probability measures, see [A-C], [Cr], 
[Fuji. Finally let us mention that whereas all above examples are of elliptic-parabolic type, also 
some hyperbolic stochastic (partial) differential equations can be handled, see e.g. [ARu] (and 
references therein). 

In this paper we shall concentrate on the case of an Hamiltonian system with finite dimensional 
state space. We shall see that even in this simple case relatively little is known and many 
interesting problems are open. More concretely we study an Hamiltonian system of the form 

dx(t)  = v( t )dt  (1.4) 
dr( t )  = K (x( t ) )  dt + dwt, 

with wt a Brownian motion in ~ /d  started at time 0 at the origin, i.e. {wt , t  > 0} is a Markov 
stochastic process, consisting of independent Gaussian distributed random variables with inde- 
pendent Ganssian increments w(t) - w(s), s _< t, with mean zero and covariance (t - s). 
The inital data  x(0) = x0, v(0) = v0 are given in ~2~ (e.g. independent of the point w in the 
underlying probability space). We can rewrite (1.4) in the form 

y = , f l ( y ( t ) )  = \ Z ( x ( t ) ) ] '  
(1.5) 

= w i t h  = dy(t)  
\.]~t 

bt a Brownian motion started at  time 0 in 0, independent of wt. 
Models of this type are frequently discussed in the literature mainly numerically, in connection 
with vibrations in mechanical systems, wave propagation and other problems (see e.g. [Li], [Kr-S], 
[Sch], [Ka]). 
Hamiltonian systems of this type are also obviously important in celestial mechanics (see e.g. 
[Mo]). One of the reasons for which they have not been so well studied on a mathematical 
basis is the quite intricated nature of the classical motion themselves (as compared to dissipative 
systems). Let us mention that  a number of papers have been devoted to the study of the 



corresponding deterministic problem (see e.g. [Di-Z] and references therein). For stochastic 
perturbations of other type (multiplicative ones) see e.g. [APW], [P]. Orbits of very different 
long time behavior cannot be separated in finite time intervals, stable and unstable behavior 
being mixed. In particular, the orbits are in general neither globally stable nor asymptotically 
stable, see e.g. [Ar], [Mo] and [Mo-Ze]. The nature of the orbits depends in particular on the 
dimension of the system. For example in the case of more than three degrees of freedom the 
phenomenon of Arnold diffusion can met one. It is interesting to find out what one can say 
about perturbations in case the force is stochastic, hence typically non smooth, in particular, 
whether the complicated behaviour of classical orbits is enhanced or whether stochasticity is so 
strong as to change the picture radically. Potter [Po] (see also Mc Kean [McK]) analysed the 
case of a 1-dimensional nonlinear oscillator perturbed by a white noise force, described by the 
equations (1.4). Under assumptions on the force K(x) = - V ' ( x )  , V E Cl(/R) being attracting 
towards the origin, i . e . x .  K(x)  < O, Potter proved the existence of global solutions and results 
about recurrence as well as the invariance of Lebesgue measure dxdv under the flow given in 
(1.4). These results recently have been extended in [Mark-W] who studied in particular winding 
numbers around the origin associated with the solution process (x, v). 

Existence and uniquelless results for solutions of higher dimensional second order Ito equa- 
tions, as the systems of the type given in (1.1) have been called by Borchers [Bo], have been 
deduced by Goldstein [Go] for systems with globally Lipschitz continuous force K, and Narita 
[Na] in case there exists a function, decreasing along the paths analogously to a Ljapunov function 
in the deterministic theory. 

In the first part of this paper we shall study equations of the form (1.4) in the case where 
x, and v run in ~a .  In Section 2 we establish existence and uniqueness results for strong solu- 
tions of the equations, under assumptions on K which are of the type K(x)  = - V V ( x )  for some 
V E Cl(~d) ,  with either a condition of the form K is linear or x .  K(x)  < 0 for Ix[ sufficiently 
large or V(x)  sufficiently increasing at infinity. Then the solution process possesses the Markov 
property and continuous sample paths, furthermore it depends continuously on the initial condi- 
tions. 
In section 3 we compare the solutions of the nonlinear system (1.4) with the ones of a corre- 
sponding linear system given by 

dx = vdt 

dv = -Txd t  + dw (1.6) 

and 7 a constant dxd-matrix with positive eigenvalues. This is done by establishing a Comeron- 
Martin-Girsanov-Maruyama type formula for the Radon Nikodym derivative of the probability 
measures. We apply these results to prove some properties which hold with probability one for 
the nonlinear system by exploiting their validity for the associated linear system. 
In section 4 we recover some features of the behavior of the solution process of the nonlinear 
system for large times. In particular, we give estimates for the energy functional of the process. 
We introduce the generator of the diffusion, solving (1.4), and show its hypoellipticity (in the 
sense that the coefficient functions span the tangent space to phase space). By a HSrmander's 
type theorem one obtains the absolute continuity of the transition probability of the transition 
probability w.r. to Lebesgue measure without further restrictions but continuity of the coefficient 
functions. We also show that for the solution process of (2.1) an existence and uniqueness theorem 
for a a-finite invariant measure, which is the "normalized" Lebesgue measure, holds. For more 
details on the result presented here we refer to [AHZ], [H]. 



2. E x i s t e n c e  a n d  U n i q u e n e s s  o f  S o l u t i o n  

We consider the Hamiltonian system with stochastic force given by the stochastic differential 
system 

dx = vdt 
d v =  K(x)dt  + dwt (2.1) 

where t E JR+ is time, x(t) is position in JRd at time t, v(t) is velocity at time t. 
K(.) is a deterministic force, (wt ,~ t , t  E JR+) is a Brownian motion in JRd started at the origin 
at time zero, see section 1 for motivations. The initial conditions are given. 
It is useful to introduce the phase space variable y = (x,v) E JR2d and to write (2.1) in the form 

dy = ~(y)dt + ~d~, (2.2) 

with 
( v ) )  (00 01) ( b t )  o - ~  , ~ t  ~ , ~ ( v ) -  K(x ' ~ ,  

where (bt, .At, t E JR+), .At = a{b,, s <_ t}, is an (.T't) independent Brownian motion in JRd 
issued from 0 at time O. The initial condition y(O) is given. For simplicity we state the theorem 
assuming y(0) = 0. 

T h e o r e m  2.1 

Each of the following conditions is sufficient for the existence of pathwise solutions of (2.1), (2.2) 
for all t E JR+ : 
a) 1) ]K(a) - K(/~)I < Cl1~ -/~1 VIii, I/~] < R, for some constants R, C1 • 

2) IK(a)l < C~(1 + I~l) va e JRd for some constant C~. 

b) 1) a ~ K(a)  is a locally Lipsschitz function from JRd into JRd. Moreover 
2) For d > 1 : I f (a)  = - V Y ( a )  for some V E CI(JR d) 
3)~. K(~) _< 0 for all ~ e JRd. 

R e m a r k  

Corresponding statements holds for t ~ to with initial condition y(to) given, and 
(a - y(t0))" K(a)  < O. 

P r o o f :  

Statement a) can be proven by a stochastic version of Picard-LindelSf method of iteration, see 
e.g. [Arl] (Cor. 6.3.4) . 
1) For d = 1 the statement b) in a special case of a result of Potter [Po], see e.g. [McK], [Nal]. 
We give a proof valid for d k 1 which uses a Ljapunov function for the solution of the stochastic 
differential equation. To this end we introduce the energy functional: 

W(y)  = ~ l v l  ~ + r ( x )  - V(0). (2.3) 

Let L be the differential operator (generator) associated with (2.2) i.e. 

1 
L = v. V~ + K(x) .  Vv + ~/~v (2.4) 



where Vx(Vv) are the gradient w.r. to x(v), respectively, and A~ is the Laplacian w.r. to v. All 
operators are acting on functions of (x, v) E ~i~ 2d. Applying L to the energy function W we find 

Furthermore from condition b)2) 

1 
L W  = ~ (2.5) 

we conclude for I'll # o 

av(~) 
~ .  K( . )  = - ~ .  VV(~)  = I~1 o - ~  (2.6) 

d W  = v( t )dw(t)  + d dt + o(t])  

f 
ill 1 

V(~) : V(0) - (/3. K(/3))dJ/3[ > V(0) (2.7) 
JO ~ -- 

where we used assumption b)3). 
For the energy functional in (2.3) this implies 

W(y) > ~lvl ~ . (2.8) 

and 

I ~ v ~ w ( y ) f  2 = I~,1 ~ _< 2W(u). 
Since/3 in locally Lipschitz continuous, following [Na2] and [Ik-Wa] (Def. 2.1) we can discuss 
local solutions. 
In a first step we introduce stopping times 

a . ( w )  -- i n f { t  > 01 Iv(t)[ >__ n} 

of the process Y --- (y(t) ,  t _ 0) and define the explosion time e(0) of Y for given innitial condition 
v(0)  = 0, by  

e(0) = sup{inf t I ]y(t)l > n} (2.9) 
h E N  

with inf replaced by +c~ if the set is empty. For any n E ~W the process Yn -- (y(t  A an)l t >_ O) 
defines a local solution of (2.1) on the ball B,(0) ,  since there exists a uniform Lipsehitz constant 
on every B,(0)  which guarantees the existence and pathwise uniqueness of solutions. For n ---+ oo 
the local solutions Y~ converge a.s. to the maximal solution of (2.1), corresponding to the 
martingale 

~i( t )  - y i (0 )  - ~ ( y ( s ) ) ~ k ( s )  + /3i(~(~))a~ i = 1 , . . . , d  
k = l  0 

with expectation 0, for t E [0, e(0)] cfr. [Na3]. It is shown in [Na2] that the proof of existence of 
a global solution Y for initial condition y(0) = 0 is equivalent to an infinite explosion time e(0), 
i.e. to 

( 

No - 0% and lira fY(t)l = +oo  (2.10) 
l tt~(0) ) 

satisfying 
~°(N0 = {e(0) < oo}) = 1. (2.11) 

For times before an explosion occurs we can reexpress the energy functional W given by (2.3) by 
applying Ito's formula to the differential 



obtaining 
t 

w(Y(~))  = W(O) + J t  v(s)~w(s)  + dl . (2.12) 
0 

The process W(y(t)) can be simplified by introducing analogously to [McK] a new Brownian 
motion 

r t  

with a clock running according to the time 

Under the assumption of Theorem 2.1 b) a global solution of (2.1) in established due to (2.11) 
by the following 

Lemma 2.2 

Adopting the hypothesis of Theorem 2.1 b) there holds 

Proof: 

The proof of the higher dimensional statement can be reduced to the one for the one dimensional 
case in [Po] with y being replaced by lyl. The proof is by contradiction, distinguishing the cases 
r(e(0)) < co and r(e(0)) = co, and using the sample path properties of the Brownian motion a(.). 
Thus the a.s. finiteness of ly(t)l, where 0 5 t 5 e(O), is deduced, which yields the contradiction. 

Theorem 2.3 

Each of the conditions a) and b) of Theorem 2.1 is sufficient also for pathwise uniqueness of 
solutions of the equations (2.1), (2.2), i.e. if y, y' are two solutions of (2.2) on the same 
probability space with the same filtration s.t. y(0) = yl(0) a.s., then 

Proof: 

a) This case is covered e.g. by [Fr]. 
b) This case follows from [Ik-Wa], (Theorem 3.1 p. 164) since the coefficients of the equations 
(2.1),(2.2) are in particular locally Lipschitz continuous. This yields uniqueness for times t ,  0 5 
t 5 e(O), and this together with the fact (demonstrated in the proof of Theorem 2.1) that 
e(0) = CQ a.s. yields uniqueness for all t 2 0. 
It also follows from [Ik-Wa] that (2.1), (2.2) have unique strong solutions. 



3.  A G i r s a n o v  F o r m u l a  

In this section we shall investigate whether the probabi l i ty  measure associated with the 
solution of the stochastic differential equation (2.1), i.e. 

dy(t) = fl(y(t))dt + adffJ, 

with (v) (00) 
o ' =  t~--= , 

fl(Y) K(x  ' O1 ' wt 

is absolutely continuous with respect to the probabi l i ty  measure associated with the corresponding 
Gaussian process given by the stochastic differential equation 

with 

drl(t) = a(rl)dt + adt~t (3.1) 

a(r/) = - T z  ' 3' a constant matr ix ,  

and vice versa. If this holds, almost sure s ta tements  concerning the nonlinear system are equiv- 
alent to almost sure s ta tements  concerning the linear system. 
In order to show the equivalence we shall derive a (Cameron-Mar t in-Maruyama-)  Girsanov for- 
mula  relat ing the probabi l i ty  measures. 

Lemma 3.1 

Let W ( y ( t ) ) -  ½1v(t)12+V(x(t))-V(xo) with V s.t. - V V  = K ,  Y = (y(t),t  _> O) satisfying 
(2.1) or (2.2). Then, for all t >__ 0 

i) E ( W ( y ( t ) ) )  = ~J(W(O)) + d ~  

and 

) i i ) •  (W2(y(t))) = • (W(0) 2) + ~ ~7~ + V(x(s))  - V(O) ds 

+~ ~ Iv(s)l ~ as. 

P r o o f :  

Statement i) follows from 2.12 by taking expectation, and using that fj v(s).dw(s) is a martingale 
with expectation zero. 
ii) Given F E C2(1R), and a solution Y = (y(t),t  > 0) of (2.1) or (2.2) for W(y(t))  = 
½ Iv(t)l 2 + v ( x ( t ) )  - V(xo)  we calculate, using Ito formula successively, 

F(W(y(t))) = F(W(O))) + F'(W(y(s)))~(s). d~(~)+ 

[ 
Insert ing F (~ )  = ,k 2, A E ~ ,  we get the equation ii) of the lemma. • 



L e m m a 3 . 2  

Let Y be the solution of the stochastic differential equation (2.2). Then the configuration process 
(x(t), t > 0) as well as the velocity process (v(t), t > 0) possess finite absolute moments of second 
order. 

P r o o f :  

Starting from (2.8) we find using Lemma 3.1 i) 

E(lv[ 2) <_ 2E(W(y(t))) + 2Ck 
(3.2) 

= 2W(y0) + dt + 2Ck 

Inserting equations (2.2) and (3.2) into the expression for the second moment of the configuration 
process then there holds: 

(,/: ) E(lx[  2) = U v(s)dsl 2 

__ E(Iv(s)?)d~ (3.3) 

< dt2 - 2 + 2(W(y0) + Ck)t 

where Ck is a positive constant. 

L e m m a 3 . 3  

Let K, Y = ((x(t),v(t)), o < t < T) and q = ((z(t),u(t)),u < t < T) be as in Theorem 2.1 and 
in (3.1) respectively. There holds 

V } IK(x(t)) +'~xl2d~ < ~ = 

Proof." 

As was shown in Lemma 3.2 the second absolute moment of the configuration process X = 
(x(t), t > 0) is finite (see (3.3)). Since I(  is Lipschitz continuous and X has continuous paths 
a.e which are bounded on [0, T] we have 

~ot 'K(x(t)) + Tx(t)'2dt < 2 ~o T ('K(x(t))]2 + 'Tx(t)'2)dt 

) < 2 fo K~lx( t ) -  xo]e + lTl2]x(t)12 + lK(xo)l 2 dt < cc, (3.4) 

where KT, the Lipschitz constant of the sphere Bro (x0), r0 = maxte[0,t ] { Ix(t) -x0[}, may depend 
on the specific path w. Since z/is a degenerate Gaussian process we find analogously P a.e 

~oT 'K(z(t)) + Tz(t)'2 dt <<_ 2 ~o T ('K(z(t))'2 + 'Tz(t)'2)dt 

~0 T ( [2 _~ ]~[2]Z(t),2 _} - [K(xo)]2)dt< __< 2 ~ l z ( t )  - z0 (3.5) 
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where/~'~ the Lipschitz constant of the sphere Bso(zo), so = maxt~[0,t] { [z(t) - z 0  I}, may depend 
on w, and the second constant factor is defined as [7[ 2 - [trace 7t 2. • 

P ropos i t i on  3.4 

Let T > 0, and (w, , t  • [0, T]) be a Wiener process with state space ~n .  Furthermore take 
(~, 9v,/o) as Wiener space, and .Tt - a(ws, s • [0, T]) as the a-algebra generated by the Wiener 
process up to time T. Let ~t,r/t be stochastic processes on (~ ,~ , .T ' t ,~)  s.t. ~t and r/, are .Tt- 
measurable and assume ~t, r/t satisfy the stochastic differential equations 

d~t = A(t, ~)dt + °(t, ~)d~, 

d , ,  = a(~, , )d t  + o (~ , , ) d~ , ,  

with r/0 = ~0 being .T0-measurable and 

~ '  {~0 < oo} = 1. 

A, a, a should satisfy the following conditions: 
i) A(t, ~), a(t, ~), a(t, ~), ~r(t, ~1) are .Tt-measurable and such that there exist unique strong 

solutions ~t, ~t of the above stochastic differential equations(i.e, solutions on the probability 
space (a, 5r,~P)). 

ii) For arbitrary fixed t • [0, T[ the system of algebraic equations in x over JR ~ admits a 
solution a(t, x): 

a(t, x)a(t,  x) = A(t, x) - a(t, x). 

The function a(., .) should be measurable in t • [0, T], x • ~ ,  and satisfy 

iii) 

) 1Eexp ~ ]a(t,~,)[2dt < c o  

Let #~ resp. #7 be the probability measures on (~/,, 5 r, LP) associated with ~ resp. r/in the sense 
that the probability of {~,1 • B1, . . . ,  ~,. • Bn} is #~ (~h • Ba , . . . ,  ~,. • B,~) for all Bi • B(~n),  
and all ti • [0, T], and similarly for #7 Then #~ and #7 are mutually absolutely continuous i.e. 
are equivalent and one has ~-almost surely 

d # ,  = _ j f  ~(t,~.d~, . - ~  Jo ~ i~(,,~1 ~ d, 
d#~ 

Proof:  

The proof is a multidimensional version of the statement made in [Lip] (Th. 5.4 p. 160) for Z~5~ 1. 

T h e o r e m  3.5 

Give the probability space (~,.4 ® 5 r, ~ )  as above. Let Y = ((x(t), v(t)), t _> 0) with initial data 
y0 be the global solution of the nonlinear stochastic differential equation (2.2) with K satisfying 
the assumptions of the existence and uniqueness Theorem 2.1. 
Let r I = ((z(t), u(t)), t > 0) be the solution of the linear stochastic differential equation (3.1). 
Then the process r I is equivalent to Y, in the sense that the probability measures #7 and #v 
constructed on path space fl are equivalent. The Radon-Nikodym derivatives are given by 



"['1 

and 

d/~, (V) = exp - (K(x(t)) +'yx(t)). dw(t) - ~ ]K(x(t)) + 7x(t)] 2dr . 
d#y 

Proof: 

For arbitrary fixed t E [0, T], and a(y), fl(y), cr as in Lemma 3.2 the system of algebraic equations 
in x over ~ d  admits a measurable solution 6(x) 

~ ( y )  =/~(~)  - ~(~) (3.6) 

Denote by 61,~2 the first respectively last d components of 6 (x ) .  6i is left undefined by (3.6), 
for convenience we choose 61(y) = 0 .  62 is determined by (3.6) as 

6~(y) - ~(~)  - K(~)  + 7~ (3.7) 

For any function n = (~1,~2), ~i ~ C([0, T],IRd), i = 1,2, we define the exit time of h(t,x) := 
f~ [a(x(s))[2ds in (3.5) from the sphere of radius n by 

0.(~1) := {Tf{  ~lt  -< T}, h(t, al) _> ~ (3.s) 
otherwise 

and set On(a) := zgn(~a). The characteristic function Xn(t, n) = X{o.(.)_>t} allows to define a 
truncated drift coefficient A,~ relating by a Girsanov transformation the solution of (3.12) below 
with (3.1). A,, is defined by (3.9,3.10): 

a n ( h i )  = - ( T g l )  q- Xn(t, n)[K(xl) + ~/al] , (3.9) 

( ~ )  (3.10) 

Let us consider the process Y(~)(t) = (y~), At ® ~[0 < t < T) defined by 

Y}") := Y*^o.(u) + - X,~(s,Y('~))](-'yy(")(s))ds + [1 - X,(s,Y)(")]a dw~. (3.11) 

By Proposition (2.8) equation (3.11) has a unique solution, with y(")(t) = y(t) for t <__ e(0). 
Applying Ito's calculus we find that Y(~) satisfies the following stochastic differential equation 

dy(')(t) = d,(y"(t))dt + adwt , Y,,o = yo (3.12) 

Using 

( ~2 ) =Xn(t,~Cl)[K(nl)+'yaa] A,(~)  - -7n l  

we deduce 

f ' II~',~(~(-))) + 7 g - ) [  ~ <_ ,~ ~ a.e. 

Moreover, the criterion for the Girsanov density to be a martingale given in Proposition (3.4) is 
fulfilled, i.e we have 



12 

and the following formula for the density holds: 

[/: ] d#~ • 

= ~ ( ~ ( s ) ) .  dw(s) - 2 J0 I~(~(s))12d8 (3.14) 

- ¢ r^s .<~)(~) .  

Let F be a Balre set in the space C([0, T], ]R 2d) Then we approximate #y(F) by the density of 
the truncated process and rewrite the expression gained in this way by using (3.14) 

~y(r) = ~im~r(o~(r n {en(~) = T}) 

= lim [ (T^O.(~)(~) d#,(~) 
n--+c~ Jrn{o.(,~)=T} 

= lim / (T(l¢) d/%(~) 
n--*~ drn{O.(~)=T} 

= Jr (r(~) 
d#,(,~) 

This means that #~ is absolutely continuous with respect to #~, and the Radon-Nikodym deriva- 
tive is given by (T. 
Finally, let us point out that (3.5) also implies that the stochastic integral/0~(K(z(t)) + 7z(t)) • 
~w(t) exists and is finite (t" a.e), see e.g. [UcKean], Z3.6 (p. ~ )  or [¢,ip], ~¢ote 7 (pp. 104). 
Then 

#,{(T(~) = 0 [~ • supp#,]  = O, 

which ends the proof. 

R e m a r k  3.6 

All assumptions are satisfied e.g. in the following cases: 

a) for some constants c~o~C],C2 > 0: 

d = 1, V(~ )  = C1~ 2q + C2 

d > 1, Y(c~) = CllC~l 2q + C2, 

b) for qeAr  
d = l ,  

q e~w,  Vl~l ~ > ~o 

(3.15) 

V(a) = a2qf(c~) with f smooth and such that 

af'(c~) + 2qf(c~) > 0 Via I > c~0, 

Y(a)  Lipschitz for lal < ]c~0], for some a0 > 0. 

R e m a r k  3.7 

The restriction to initial condition Y0 = (0, 0) is technical, and can be released since in the 
autonomous case all we need is a growth condition far away from the origin, see [HI. Following 
[Mark-W] from the Girsanov-type stochastic equivalence result we can transfer some conclusions 
about the behaviour of the linear process in finite time to the nonlinear system. In particular we 
have: 
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Under the assumptions of Theorem 3.5 

z(t) ~ + v(t) ~ > o 

provided 

• (07 + v(07 > 0 

Vt > 0, 

almost surely.. 

4 .  S o m e  A d d i t i o n a l  R e m a r k s  

We can use the energy function defined in (2.15) to obtain some estimates on the behaviour of 
the solution process Y of equation (2.2) with initial condition Y0 = 0 as t ~ oc. In fact we 
have 

T h e o r e m  4.1 

Under the assumptions of Theorem 2.1 the process W(y(t))  - d~, 0 < t < ~o, is a martingale, 
and we have 

W(O)+d~ _ < ~ ( [ W ( y ( ~ ) ) p ) < d ~ I I ( 2 t - ~  ) 2k [W(0)P-~(d ) 
k : l / : 1  

Proof:  

As was pointed out in section 2 see (2.12), W(y(t))  - W(O) is the sum of a martingale and the 
nonrandom function d~. 
a) Applying Ito's formula to (W(y(t)))  n , repeatedly, and using that the martingale 

f0' v(*)(w(y(s))) n - l  dw8 has expectation zero, we find taking expectation 

E(w(y( t ) )")  - ~ (w(y0) n) = 

( ) ° ( ° -  ( )) (41) 
= d E W(y(s))  n-1 + ~ 1)E ]v[2W(y(s)) ~-2 d s ,  n > 2 .  

From (4.1) and 

we have 

d~ E W(y(s))  ~-1 ds _<~(W(v(t))  n) - E ( W ( 0 )  ~) (4.2) 

d t <o/o  
Moreover, one can easily see by induction that 

_< d n E  ( (x /~z  + ~ ) 2 n ) ,  (4.4) (w(y(~)) ~) 

where the expectation on the r.h.s, is with respect to standard Gaussian measure z (with mean 
0 and covariance ½). Computing the expectation on the r.h. side in (4.4) yields the right 
estimate given in this theorem. The proof of the left inequality goes by induction. We integrate 
the inequality given by the assumption of the induction, and insert the resulting estimate into 
(4.2). • 
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The process of Theorem 4.1 is a Markov diffusion process, since it solves the stochastic equation 
(2.2). The Markov kernel P(t, a, db), a, b E ~2al defined by the transition probability is then 
well defined. Since g(x)  is continuous by our assumptions, P(t, a, db) defines a (Feller) Markov 
semigroup on Cb(~2~). Let L be its infinitesimal generator s.t. for f e C~(~:~ 2d) 

(Lf)(a) = d E~(f(y(t)))[t=o. 

Using Ito's formula, see e.g. [Fr], [Si]: 

(Lf)(a) = (Av + K(x).  ~Tv + v. Vx) f (a )  (4.5) 

with a _-- (x, v). Following [Po] one can show that P(t, a, db) is absolutely continuous w.r. to 
Lebesgue-measure db for fixed t, a. This is seen by looking at the transition probability kernels 
Pn(t, a, db) for the approximation of (2.2) obtained by replacing K(x) by 

K(x)  if Ix[ < n  
Kn(x)  = I~:(n) i f  Ixl > ~. 

By known results on the fundamental solution of degenerate parabolic equations with globally 
Lipshitz coefficients we have that P'~(t, a, db) = p~(t, a, b)db, with pn(t, a, b) E 
e LJoc(db ). A dominated convergence argument shows that P'(t ,  a, A) ~ P(t, a, A) and from 
Pn(t, a, A) = 0 for IA] = 0 follows that P(t, a, A) = 0, hence the absolute continuity of 
P(t, a, db). 

Let us regard P(t, a, db) as defining a Markov semigroup Tt in the space A4 of signed measures 
with finite total variation, by defining for # C 

:--/~dP(t,  a, .)#(da). (4.6) Tt#(.) 

We call # an invariant measure for the Markov semigroup Tt, or an invariant measure for the 
process Y if 

Tt#(A) = #(A) (4.7) 

for any Borel subset A of ~2d and all t _> 0. We shall see that under the above assumptions 
P has a density p w.r. to Lebesgue measure. We have for (4.4) by Fubini '  s Theorem 

#(A) = /~2dP(t,a,A)#(da) = /A (/~:t 22(t'a'y)#(da)) dy (4.8) 

where we used the absolute continuity of P(t, a, .) w.r. to Lebesgue measure. From (4.8) 
absolute continuity of the invariant measure follows. 
At this point, we insert the following 

R e m a r k  4.2 

Let L be the infinitesimal generator of the semlgroup Tt, then any invariant measure # of the 
process Y of Theorem 2.1 satisfies 

/~#(db) = 0, (4.9) 

and conversely. 

L e m m a  4.3 

The Lebesgue measure on /R  2d is an invariant measure for Y. 
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Proof i  

Let L* be the formal dual of the operator L with ~D(L) C Cb(~2a). For Pt 
by: 

(pJ)(b).(db)= f(b)r,.(db) 

we get by differentiating w.r. to t: 

hence, on C2(~:~ 2d) , there holds 

This implies using the special form (4.5) of L: 

L= Av-g(x) .Vv-v .V~ 

In particular, applied to Lebesgue measure A this yields 

LA = 0 

By Remark 4.2 )~ is then an invariant measure of the process Y solving (2.1) (or (2.2)). 

the dual of Tt given 

vy ~ c~o(~ 2d) 

(4.14) 

(4.11) 

R e m a r k  4.4 

One verifies easily that, if K is C °°, L is hypoelliptic in the sense that it has the form 

L = X~ + X0 (4.12) 

with Xil = 0 o , d} ~ ,  Xio = Ki(x)"  O +vi'b~-~, 1 < i < d, so that {Xil [Xi,,Xio][ 1 < i < 

span the smooth vector fields over Kl 2d. 
For additional results see [AHZ], [H]. 

Obviously many open problems remain, to name only one of them: is the solution process null 
recurrent (cfr. [Bat])? 
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STABILITY C~ GROUND STATES 

FOR NONLINEAR CLASSICAL F~.D q~EORIES 
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D-4800 Bielefeld I 

O. Introduction 

In this contribution wewant to describe a stability theory for solitary waves 

of Hamiltonian systems which arise from many models in classical field theories. 

Most classical field theoretic models have common propel-ties, e.g. scaling behaviour, 

existence of a ground state etc. [ 4 ] . Our abstract version will contain these in- 

gredients. This will enable us to extend previous results by the authors [~3] and 

to present an alternative approach to the theory of Grillakis, Shatah and Strauss 

[ 7 ]. To illustrate the general context let us start with an well known exarmple 

namely the nonlinear logarithmic Schr~klinger equation. On ~n n > 3 we consider 

the equation 

i#t + A~ + f(~) = 0 

log I¢I 2 . The associated energy is given by 

(ms) 

where f(¢) = 

(o.1) 

with 

(0.2a) 

(0.2b) 

E ( ~ )  = K ( ~ )  - V ( ~ )  

K(@) ~ JV@J 2 

E(#) is, at least formally, conserved for solutions of (NI~) . E(#) is well-de- 

fined in the class 

(0.3) W --- H I(]R n) n {# 6 L I 12 12 L I loc I J~ log I~ 6 } . 

It was proven by Cazenave [ 5 ] that W is a reflexive Banach space (so-called 

Sobolev-Orlicz space) and that E is of class C I on W . See also [I 3]. 

For the mc~ent we restrict ourselves to the subspace of radial functions in 

W , i.e. we consider cnly functions in 
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(0.4) X ~ W r = {4 6 W , ~ radial} . 

We can write equation (NLS) also in the standard Hamiltonian form 

d4 _ E' (H) d-~ - J (4) on X 

where J is simply the multiplication by (-i) . This Hamiltonian 

system is invariant under gauge transformations 

(0.5) U(s)4 = e is 4 , s 6 IR 

The invariance implies the conservation of the charge 

I ~ l~12dx (0.6) Q(4) = - ~ n 

which is well-defined on X . 

We are interested in solitary wave solutions of (H) of the form 

(0.7) 4(t,x) = U(wt) 4w(x) , ~ fixed. 

They satisfy the "stationary" equation 

(0.8) - A 4w = 4~ log 14w[ 2 - ~ 4~ 

which can be equivalently written in the form E'(4) = w Q' (~). 

The existence of nontrivial solutions of (0.8) can be proved by varia- 

tional methods as follows: 

Associated to the stationary problem we define the "action" functional 

(0.9) L (4) m E(~) -- ~ Q(4) 

= K(41 - V (4) 
O] 

where V = V + w Q. In particular we are interested in solutions ~ 

which have least action among all possible nontrivial solutions of 

the stationary equation. Such solutions are called ground states. 

To obtain ground state solutions one solves the following constrained 

minimization problem (see e.g. [1,9]): 

(O.10) I(~) = inf {K(4), 4 6 X , V~(4) = I} . 

The fact that a solution of this problem can be transformed into a 

solution of the field equation relies essentially on the nice beha- 

viour of K and V w under the action of a scaling group T 
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Indeed, let 

(0.11) 

i.e. T 

(O. 12a) 

T ~(x) = ~(x/a) o 

is a representation of the group of dilations, then we have 

n-2 
K(T(~9) = (~ K(}) 

V o(T ~) = d n Vw((~) 

This property of K and V will be called "scale covariance". 

In the case of the logarithmic SchrSdinger equation the ground state 

is explicitly known and given by 

(O.13a) #~(x) = ~o exp(- ~/2) 

and 

(O.13b) ~o(X) = exp(N/2 - I/2 x 2) 

Now we are interested in the Liapunov stability of the ~ -orbit 

{U(s)~,s 6JR} in X . 

For the logarithmic Schr~dinger equation the result is well-known: 

The first proof of orbital stability was given by Cazenave [5 ] 

using compactness methods. Recently the same result was obtained by 

Blanchard, Stubbe and Vazquez [ 2 ] who extended the methods of two 

earlier papers by Shatah and Strauss [11,12] . 

The most general approach to the stability problem has been given very 

recently by Grillakis, Shatah and Strauss [ 7 ] who studied the stabi- 

lity of solitary waves of Hamiltonian systems in a real Banach space. 

The main tool of their theory is the linearized Hamiltonian 

(0.14) H w ~ E"(~)- w Q"(~w) 

The idea is to show that the Liapunov stability of the ~w-orbit is 

equivalent to the fact that ~ minimizes locally the energy E sub- 

ject to constant charge % . Moreover these properties are equivalent 

to the condition that the action of the solitary wave Lw(~e) consi- 

dered as a function of ~ is convex. Unfortunately this theory is not 

applicable to the logarithmic Schr~dinger equation since the energy 

functional is not twice differentiable as pointed out in [2 ] and thus 

the linearized operator H w does not exist. Our main goal is to pre- 

sent a stability theory for ground state solitary waves of Hamiltonian 

systems for which the linearized Hamiltonian does not exist. 
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In Section I we describe our abstract framework and state the main re- 

sults. In Section 2 we give the outline's of the proofs. Technical de- 

tails are omitted. They will be published elsewhere. In Section 3 we 

present some examples and in Section 4 we discuss some extensions, in 

particular to systems invariant under more than one symmetry. 

I. The abstract model 

Let X be a real Banach space. We consider the following Hamiltonian 

system on X 

du 
(H) d-T = J' E' (u) 

onto 
where J : X X is a skew-symmetric linear operator from X 

to X and E : X ---~ ~ is a C I functional on X . 

We are now in a position to list our main assumptions: 

on- 

1.1 Properties .of the energy E 

E can be splitted into two scale covariant parts K 

there exists a continuous mapping 

a I , a 6 ~  + , T 6 i(X,X) a 

T I = Id X 

K and V such that 

and V i .e. 

(1.1) 

such that 

(1.2) T T = T , 
a I a 2 gla2 

and there exist C I functionals 

(1.3) E(u) = K(u) - V(u) 

and 

(1.4a) K(Tou) = a r K(u) 

(1.4b) V(Tau) = a s V(u) 

with 0 < r < s , i.e. y --- r/s 6 (O,1) 

K and V (and hence E ) are invariant under a strongly continuous 

one parameter group of isometries U(s) : X------~ X , U(s +r) = 

= U(s) U(r) , i.e. 

(1.5a) K(U(s)u) = K(u) 

(1.5b) V(U(s)u) = V(u) 
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Associated to this invariance there is another conserved quantity 

(I .6) Q(u) = ½ <Bu,u> 

where B : X ~ X is symmetric and JB is an extension of the infi- 

nitesimal g e n e r a t o r  U'  ( 0 ) .  < , >  d e n o t e s  t h e  d u a l  p a i r i n g  b e t w e e n  X 

and X 

1.2 Property of the 'charge' Q 

We assume that Q has the following behaviour under the action of the 

scaling group T 

(1.7) Q(T u) = a q Q(u) with q = r or q = s 

We define 

(1.8a) K (u) --- K(u) - w6 Q(u) 
rq 

(1.8b) V (u) -= V(u) + w6 Q(u) 
qs 

and assume K (u) > O if u ~ O and K (O) = V (O) _ = O 

Furthermore we define 

(1.9)  L (u) --- E(u) - w Q(u) 

= K (u) - V w(u) 

1.3 The minimization principle 

We assume that there exist w I < w 2 

the problem 

such that for any w 6 (~i,~2) 

(1.10) I(~) = inf {Kw(u) I u £ X , Vw(u) = I} 

has a unique solution ~ , i.e. 

K (~) = z(~) , V (~) = I 

in the sense that for any minimizing sequence 

and lim K (u n) = I(~)) 
n-~ 

sequence of real numbers 

(1.11) U(Sn.)U 
] nj 

(Un) n 

there exists a subsequence 

(Sn) such that 
3 

'7 in X as n. ,~ . 
3 

This means that any minimization sequence for 

bit {U(s)~,s_ 6 IR} 

(i.e. V(u n) = I 

(Un.) and a 
3 

(1.10) tends to the or- 
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If we define ~w -= T~(~) ~ with ~(w) = (y I (~))I/s 

a ground state of the stationary equation 

(I .12) L'e(%~) = 0 

and u(t) = U(et)~ is a solitary wave solution of (H) 

A consequence of the scaling property is the following virial 

theorem for ~ 

Y K~o((~o~) = V~o(~ ~ (I .13) 

We define 

(I .14) 

then d(~) 

then ~w is 

d(e) ~ L (¢~) 

satisfies d(e) = (I - y)K (~) > O by (1.13) and 

d'(w) = - Q(~) 

Furhtermore we have the following alternative characterizations of 

d(~) : 

(1.15a) d(~) = inf {L (v) I v ~ 0 , y K (v) - V (v) <Z O} 

(1.15b) d(w) = inf {L (v) I K (v) = Kw(~)} 

Definition: The ¢ -orbit {U(wt)~w,t 6IR} is stable if for all 

> 0 there exists a 6 > 0 such that if flu o- ~ II < ~ and u(t) 

is a solution of (H) with u(o) = u ° existing for any t ~ 0 and 

sup inf II u(t) - U(s)~ II < ~ . 
t>O s6]R 

Otherwise we call the ~w-orbit unstable. 

Before describing our results it will be convenient first to consider 

a one-dimensional mechanical analogue of our abstract model (see also 

[10] ). 

Qualitatively L (w) has the same form as the energy for the one-di- 

mensional motion in a potential well. In our context L turns out 

to be the energy of the 'modulated' Hamiltonian system 

dv 
(Hmod) dt - J L~(v) 

which we obtain from (H) by the transformation u(t) = U(~t)v(t) 

where u(t) is a solution of (H) 
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For arbitrary fixed nonzero u 6 X we consider the function 

l(a) = Le(Tau) 

r (u) - a s V e (u) = a K 

If V (u) ~ O then l(o) is increasing and goes to infinity as 

If V~(u) > 0 then l(a) as a unique maximum a* = o*(u) = (Y Ke(u)/ 

V (u)) I/s-r and i(o) * ~ as o * 

We calculate the height 

(1.16) he(u ) m Le(Ta,u ) = (I -y)o,r Ke(u ) > O . 

We now define the lowest height to be passed by 

d(~) = inf he(u) 
u%O 

Equivalently, if we always normalize u so that ~* = I , i.e. 

Y Ke(u) -Ve(u) = 0 , we recover the variational characterization 

(1.15a). 

Hence ~e lies on the 'mountain pass' of the energy mountains when 

travelling from zero to regions far away. The height of the mountain 

pass is exactly d(~) . This situation is sketched in the figure below. 

LwIu} 

V (u)-zkw( 
\"\I 

>0 
u):O 

<0 
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Having in mind this picture one has the most important informations 

necessary for the proofs of our main results: 

Fix eo 6 (w1,~ 2) and let M~ m {u 6XIQ(u) = Q(~wo)} . 
o 

Theorem I: Let d"(~ O) > 0 . Then the #~ -orbit is stable. In parti- 

cular we have Q(~ ) # 0 and ~ is t~e local minimum of Elp ~ 
o o o 

Theorem 2: Let d"(~ O) < 0 . Then EIM is not locally minimized 

at ~ and the #~o-Orbit is unstable~o 
o 

Furthermore we have the following particular cases: 

Theorem 3: If Q(~ ) = 0 then the ~e -orbit is unstable and ~ 
• ,o o o 

is not a local mlnlmum of EIM 

o 

Theorem 4: If no symmetry U exists then any ground state ~o of 

E'(~) = 0 is unstable. #o is not a local minimum of the energy. 

Theorems 3/4 can be interpreted as abstract versions of Derrick's 

theorem [14] 

2. Outlines of the proofs 

First of all we prove the following intermediate results. 

Theorem 2.1: 

a) Let ~ be a charged ground state (Q(~) % 0). Then the energy 

E has ~ local minimum in M at ~ iV and only if d(~) is 
o o 

convex at 
o 

b) Let Q(~e ) = 0 . Then ~ is not a local minimum of EI~ e 
o o 

~o of E'(~) = 0 is not a local minimum of°the c) A ground state 

energy. 

Proof: 

a) Let d be convex at w ° For u 6 M sufficiently close to 

~ there exists ~ such that K (u) O= K (~) = (I -y)d(~) 

since d' (~o) = - Q(~m ) % O. Thus 
o 
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E(u) = L (u) + ~ Q(u) 

d(~) - ~ d'(m O) 

_ - d'(~o) > d(eo) ~o 

= E(~ ) 
o 

by the convexity of d 

For the opposite direction we define be ~ T (e)~ 

Then 

such that ~e 6M 
o 

d(mo) - ~o d'(~o) = E(~ ) ~ E(~) 
o 

r os = O K (%~) - V (¢~) + ~ Q(~) 

= (o r - yo s) K (~) - ~ d'(~ o) by the 
virial 

theorem (1.13) 
(I -y) K (¢~) - ~ d' (~ o) 

= d(~) - e d'(~ o) by (1.14) 

For b) and c) we choose the curve ~o = T o ~ resp. ~o = Taro " 
o 

Now we sketch the stability proof, which is a generalisation of the 

method presented by Shatah [11] for nonlinear Klein-Gordon equations: 

Let d"(~ o) > O . For arbitrary fixed m we consider the modulated 

system 

dv 
(Hmod) --dt = J L'~ (v) 

Then it can be shown that 

(2.1 .I) 

(2.1.2) 

IRI =- {u 6 XIL~(u)< d(~) , y K~(u) - V (u) > O} U {0} 

]R 2~ = {u 6 XIL~(u) < d(~) ,y Ke(u) - V (u) < O} 

are invariant regions under the flow of (Hmo d) 

This fact can be understood if one has in mind the one-dimensional 

analogues presented in Section I. If the energy L is less then the 

height of the mountain pass one can never cross it. Here ]R re- 
2 

presents the region inside the well and IR represents the exterior 

region. 
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L (v) 

7 / 

0 < 0  I=0 
V~ (v) -Tkoj(v) 

>0 
V 

Furthermore we can characterize these regions as follows: 

< d (to) } (2 2) R I/2 = {u£X I L (u) <d(~) 1 (I-y) Kto(u) > 
• to to 

Now for every £ > O small enough there exists a t > 0 such that 

if If u - ~to II < ~ then 
o 

(2.3) d(to+) < (I -7) Kto (u) < d(to_) if Q(~to ) > 0 
o o 

or the reversed inequality if Q(#to ) < 0 , where to± = to ± e 
o 

In addition v± defined by u = U(to±t) v± satisfies 

(2.4) Lto (v±) < d(to±) 
± 

w h i c h  f o l l o w s  f r o m  t h e  s t r i c t  c o n v e x i t y  o f  d 

to o 

in a neighborhood of 

Assume that 

data Un(O) 

(2.5) 

¢~ is unstable. Then there exists a sequence of initial 

9 ~to in X and ~ > O and t n > 0 such that 
o 

II Un(t n) - ~to II ~ 
o 

Applying (2.3) we conclude 
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(I - y) K o(Un(tn)) n ~ ~, d(mo ) 

and (2.4) then implies 

L (Un(tn)) n ~ ~ d I ~ d(~ O) 
O 

But now the assumptions on the minimization problem imply that there 

exists a subsequence of (Un(tn)) which tends to the ~ -orbit con- 

tradicting (2.5) o 

The following figure illustrates the proof given above: 

0 

Lw-(uo) 
I 
l 

L~.IUo) 
d(w÷)[ 

i i 

tO+ Wo W_ 

d(~) 

\ 

d(~_) 
=U 
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The instability proof first of all will be sketched for the case where 

we have no symmetry: 

By Theorem 2.1 we know that Go (the ground state of E'(u) = O ) is 

a local maximum along the curve 9o = To#o " 

d o=I We define y = ~ ToG O . There exists Y £ X such that JY = y 

We define a linear functional on X by 

(2.6) A(u) ~ - <Y ,u > 

Let u ° 6 Us(Go) . It suffices to show that d A(u(t))dt is bounded away 

from zero as long as u(t) 6 Us(G O ) 

The trajectories along the vector field - J A'(u) are given by 

(2.7) ~R(l,v) = v + i y . 

Then there exists a functional A : U -~ IR such that 

(2.8) K(R(A(v),v)) = K(G o) . 

Doing a Taylor expension for the energy and using the minimum property 

of ~o we obtain for any v 6 U (G O) (v ~ G O) 

(2.9) E(Go) < E(v) + A(v) P(v) 

d A(u(t)) 
where P(v) = < E'(v),y > . Using dt 

u(t) 6 U we easily conclude. 

- P(u(t)) as long as 

In the presence of a symmetry we proceed in a similar way. Let 

d"(~ O) < O (or Q(Gm ) = O ) 
o 

The neighborhood U s is replaced by the tube 

U ~ {u 6 X I S6IRinf {lu-U(s)~o II < ~} 

We decompose 

x = < u'(0) ~w > ~ ~ 
o 

There exists a functional s(u) : U ~ IR such that U(s(u))u - E 
- ~w 6 ~ . Then we define 

o 

(2.10) A(u) = - < Y ,U(s(u))u> 
o 

= j-1 ~ 0~ with ~ the for any u 6 U E N M e where Y ~ = 
o o o 



31 

curve given in the proof of theorem 2.1. Up to simple modification the 

proof of instability will now run along the same lines as above . 

3. Applications 

3.1. We start with the logarithmic Schr~dinger equation 

(3.1) i ~t + ~ + ~ log l#[ 2 = O on IR n , n _> 3 

As mentioned in the introduction the ground state with frequency 

is of the form 

~(x) = ~o(X) exp (- ~/2) 

Hence 

(3.2) 

with K given by 

I 
d(~) = ~ exp(-~) K(~o) 

(0.2a) and therefore all ground states are stable. 

3.2. Consider the following nonlinear SchrSdinger equation with a non- 

local nonlinearity 

(3.3) i ~t + A~ + (~N V(x-y ) ,~(y),2 dy) ~ = O 

As scaling group we take T ¢ = ~# . We define 

I 
(3.4a) K (#) = ~ ~IRNJ?,I2 + ~I~I 2 , ~ > 0 

I 
(3.4b) V (~) = ~ S I V(x-y) I¢(y)1 2 J~(x)1 2 dxdy 

IR N m N 

under suitable assumptions on V the assum)tions of Section I are va- 

lid. 

I Consider, e.g. equation (3.3) on ~3 with V(x) This is the 

so-called Pekard-Choquard equation. The minimization problem was sol- 

ved by Lieb [8 ]. Existence of solutions for the cauchy problem in 

H~(IR3) was proved by Ginibre and Velo [6 ] 

Using the scaling properties of the stationary Pekard-Choquard we see 

that 

~(x) = -I ~( -I/2 x) 

is independent of ~ . Hence 

(3.5) d(~) = 3/2 d(1) 
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and therefore all ground states are stable. The same stability result 

was obtained by Cazenave and Lions [ 15 ] using the concentration com- 

pactness principle. 

3.3. Consider the logarithmic Klein-Gordon equation 

(3.6) 9tt ~ ~ 9 log (~)2 on ~N - = , n~3 

We study this problem in the space 

X = W • L 2 (IR N) 
r r 

regarded as a real Banach space and W r given by (0.3) resp. (0.4). 

The energy and the charge are well-defined on X and given by 

I 12 2 I 2(_ +logi~212) (3.7) E(91,92) = ~ ~ 191 + IV921 - ~ ~ i921 I 
]R n 

(3.8) Q(~1'92) = Im I ~2 91 
IR n 

As scaling group we take T o u(x) = u(y/o) where u(x) = (91 (x),~2(x) t 

and define 

I 2 
(3.9a) K (91,~ 2) = ~ I i?921 

IR n 
I 2 

(3.9b) V (~1,92) = ~ ~ I~iI 
IR n 

- 192L2( - I + log I~2 12) +~ f ~i~2 . 
~n 

Now for any fixed ~ E IR we have the inequality 

(3.10) V (91,92) ~ Ve(i ~ 92,92 ) 

with equality if and only if 91 = i ~ 92 and therefore the minimiza- 

tion problem yields indeed a solitary wave solution. For the logarith- 

mic Klein Gordon equation the ground state is given by 

(3.11) ~(x) = 9o(X) exp(- ~2/2) 

= I Hence d(~) ~ exp(- 2) f iVgoi2 and we have the following result: 
~n 

If 2 ~ I/2 then the ground state 9e is unstable. 

If w 2 > I/2 it is stable. 
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3.4. We study the nonlinear wave equation 

(3.12) utt ~u = g(u) on ~R n - , n~ 3 

where for real-valued functions u on IR n . Under suitable conditions 

on g(u) (see e.g. [1,9]) (3.12) possesses a nontrivial ground state 

Uo(X) , U o is always unstable by Theorem 4. 

4. Extensions and Comments 

4.1. First of all it is natural to ask about the relation betweenthe 

model presented here and the one of Grillakis, Shatah and Strauss [7]~ 

We have the following: 

If E" exists then H = E"(#~) - ~ Q"(~) where #~ is a ground 

state satisfies the spectral assumptions of [7] , i.e. H e has 

exactly one negative eigenvalue, a Kernel spanned by U' (O)~ and the 

rest of the spectrum positive and bounded away from zero. 

d 2 
Indeed H has at least some negative spectrum since ~=I ' 

Le(T ~ e) < O. On the other hand it has at most one d~2 

negative eigenvalue since ~ is a local minimum of L on a C1-hyper - 

surface by (1.15) . The assumption for solution of the minimization 

principle (1.10) . 

4.2. An extension to non-scale covariant models is also possible. Let 

L satisfy the condition 

(4.1) 

and define 

(4.2) 

< L'~(IU) - I L~(.U) , (I - I) u> < 0 u~o 
~ :~ I 

(u) = < L~(u) , u > R e 

We can define d(e) by the minimization principle 

(4.3) d(e) = inf {Le(u) ,u 6X , u % 0 , Re(u) = O} 

Note that O is isolated in the set {u 6X , R (O) = O in view of 

condition (4.1) . 

Under these assumptions one obtains the same criteria for stability/ 

instability in terms of d(e) as for scale-covariant models. 
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4.3. The extension to more symmetries in the context of scale covariant 

functionals is very difficult. But there is one simple extension: 

Let K(u) ,V(u) be invariant under N one parameter groups 

(U~(s))ij ~j~N which satisfy the 'cormmutation law' 

(4.4) Uj(s) Uk(t) = Uk(t) Uj(s) 

The associated conserved quantities Qj 

following scaling properties: 

Vjk V~t 6 IR 

are required to satisfy the 

QI satisfies (1.7) while Q2' "''' QN may have different scaling 

behaviour. We look for ground states 

(4.5) U1(Wlt) U2(~2t) ... UN(~Nt) ~ 

of (H) which satisfy Q2 .... = QN = O 

In this case the stability of the orbit 

{U1(Sl) ... UN(S N) ~ , sj 6 IR} 

is determined by the behaviour of the function 

(4.6) d(~) = E(~) - ~I Q(~) 

in the variable ~I 

This assertion enables us to extend the stability results of Section 3 

to stability under perturbations which are not necessarily radial. Con- 

sider e.g. the logarithmic Schr~dinger equation (3.1) . Now we choose 

X = W given by (0.3) instead of W r . Then equation (3.1) is also 

invariant under translations. Gauge invariance and the 

of translation invariance satisfy the commutation law (4.4) . 

The momentum is given by 

I~ ~u 
(4.7) (u) = - ~ n 

which satisfies the scale relation P(T u) = n-1 P(u) . 

Now ~e is not only a ground state in W r , it is also a ground state 

in W . Furthermore it has zero momentum. 

Hence by the result above its stability under perturbations in W is 

determined only by the frequency and there ~ is also stable in W . 
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Abstract: We prove the existence of solut ions u for some semil inear 

e l l i p t i c  vec to r - f i e l d  equations on IR 2 with a non l inear i ty  which is 

allowed to grow at i n f i n i t y  'near ly l i ke  a l inear  exponential '  in l u l .  

In some cases a growth l i ke  exp(alu lY) ,  a > 0 , 0 < y < 2 , is allowed. 

This is achieved by introducing an appropriate space E of 'a p r i o r i -  

solut ions '  for which some important continuous imbeddings are proven 

replacing the well known Sobolev-imbeddings for the d > 3-dimensional 

case. Then the standard var ia t iona l  method is applied. 

I .  Introduction 

A f i r s t  important step in the existence proof of a solut ion of a semi- 

l inear  e l l i p t i c  equation of the type 

- a u : g ( u )  

u : IR d ~ IR n g : IR n ~ IR n n > 1 (1 I )  

is always to f i x  a space E of ~ p r i o r i  solut ions. Motivated by the 

context where such equations occur one usual ly decides to look for  so- 

lu t ions of f i n i t e  k ine t ic  energy 

i n d ~uj 2 = ½ z z iT  il2 dx (1.2) K(u) : ½ fly ull 2 j= l  i=1 

Another natural contra int  is that the functions in E should vanish 

at i ! n f i n i t y  in some sense. A way to express th is is to define E to be 

completion E1,2(IRd ; ~n) of C~(IR d ; ~n) with respect to the norm the 

f ~ lIVfl l  2 . For d ~ 3 th is  de f i n i t i on  has proved to be rather useful 

(see for instance [3 -5 ]  and references there) because then by Sobolev's 

inequa l i ty  
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II f l l  2 ,  _< S llV f l l 2  ' 
* 2d 

2 : ~ (1.3) 

th is  completion can be supposed to be real ized as a subspace of 

L2*(IR d ; ~n) . However for  d = 2 th is  i nequa l i t y  breaks down and as 

a consequence th is  completion even is not a space of d i s t r i b u t i o n s  as 

has been shown by J.L. Lions long ago. 

So when t rea t ing  the ' pos i t i ve  mass case' for  scalar f i e l ds  ( i . e .  

n = i )  Berestycki et a l .  [2] decided to look for  solut ions in the 

subspace of radial  funct ions of the Sobolev space HI(IR2) . For the 

case of vector f i e l ds  ( i . e .  n > 1) and mass zero the problem is con- 

s iderably more complicated as is well  known. This case has been t rea- 

ted by Brezis and Lieb [3] .They admit a rb i t r a r y  polynomial bounds for  

g at i n f i n i t y .  The r e s t r i c t i o n  on the behaviour of g near zero is 

expressed by the condi t ion that the potent ia l  G of g is negative 

near zero ( i . e .  G,(O) : 0 and G(y) < 0 fo r  0 < ly l  < ~ for  some 

E > O) . Their  choice of the space of 6 p r i o r i  so lut ions is well adap- 

ted to th is  s i t ua t i on  but at the expense of not being a Banach space 

of funct ions on IR 2 . 

Furthermore by the context where such equations occur and also from a 

systematic point  of view one should admit also a stronger than polyno- 

mial growth of g at i n f i n i t y  as i t  was done in [2] . Here we want 

to show that  th is  is indeed possible even i f  a more general kind of be- 

haviour of g near y = 0 is allowed than that  treated in [2] . 

Bas ica l ly  we w i l l  fo l low the general strategy of [3] respect ive ly  of 

[5] but w i t h  a d i f f e r e n t  space E of ~ p r i o r i  so lu t ions.  Correspon- 

d ing ly  the main step w i l l  be to introduce an appropriate space E and 

to study i t s  proper t ies ,  in p a r t i c u l a r  propert ies of continuous imbed- 

dings and con t i nu i t y  propert ies of cer ta in  classes of Niemytski opera- 

tors on i t .  This is done in section I I  and f i n a l l y  applied in section 

I l l  to solve equation (1.1) under appropriate condit ions admitt ing 

also a growth of g at i n f i n i t y  nearly l i ke  a l i nea r  exponential in 

lu l  and in the ' pos i t i ve  mass case' l i ke  an exponential in lul Y , 

0 < y  < 2 .  

I I .  The Sobolev-type spaces Eq(IR d ; Rn), 2 ~ d ~ q < ~ , n ~ 1 . 

The spaces Eq = Eq(IR d ; ~n) are defined as the completion of 

C~(IR d ; ~n) with respect to the norm 

f ~ II f l l  = II fllq .+ lIv f l l  d (2.1) 
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We consider th is  completion to be real ized as a subspace of the Lebes- 

gue space Lq(IR d ; A n) with norm 11. II q 

I f  in section I I I  for d = 2 Such a space E is considered to be a q 
space of a p r i o r i  solut ions for equation (1.1) the exponent q w i l l  be 

choosen according to the behaviour of the non l inear i ty  g near y = O. 

Note that for q = d = 2 E is jus t  the Sobolev space HI(IR 2 ; An). q 

In th is  section we prove some properties of the spaces E and some q 
important inequa l i t i es  for  elements in Eq which are fundamental for a 

var ia t iona l  approach to solut ions of equation (1.1) ( jus t  as Sobolev's 

inequa l i ty  is for the case d > 3 ). 

Lemma 2.1 

any d,n,q, 2 ~ d ~ q < ~ , n ~ I , the spaces Eq(IR d ; A n) are For 

real separable re f l ex i ve  Banach spaces. 

Proo f :  With m inor  changes the p roo f s  o f  the c o r r e s p o n d i n g  s ta temen ts  

f o r  Sobo lev  spaces app ly  [ 6 , 7 ]  

The main i n f o r m a t i o n  about  the spaces E wh ich  we w i l l  use i s  c o n t a i -  q 
ned in  the f o l l o w i n g  imbedding theorem. 

Theorem 2.2 

1 1 - 1 Suppose d ~ q < ~ and denote ~ = ~ . Then we have 

a) Eq(IR d) c-~ Lr(IR d) for  a l l  r ~ q with continuous in jec t ion ,  ex- 

pressed by the inequa l i ty  

il uli~ ~ Crli u[I ~ ( ~ i lvUlId )r-q (2.2) 

for  a l l  u E Eq 

b) In pa r t i cu la r  the fol lowing inequa l i ty  holds for a l l  u E E , a l l  q 
k = O, 1, 2 . . . . .  

k.p 
,, U"r l l _< ,, 

where 

( 2 . 3 )  

r ( k )  = q + k . p  , (m)k = ( ~ ( m ' + 1 ) . . . ( m + k - 1 ) ,  m = I + ~ . 
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Remark 2.1 

Theorem 2.2 has some immediate consequences: 

a) For d = 2 ~ q' ~ q we have 

HI(IR 2 ; ~n) ~ E 2 ~ Eq, E Eq 

and by examples one sees that 

Eq, ~ Eq 

whenever q' < q . 

b) For q = d = 2 Theorem 2.2 provides a simple proof of the we l l -  

known Sobolev imbeddings 

H 1 :.~ Lr(IR 2) for  a l l  r > 2 

wi th e x p l i c i t l y  known imbedding constants. At the end of th is  sec- 

ion there is a comment on an impovement of these constants. 

Proof: I .  Denote by D 1 ' I  the completion of D = D(IR d) = C:(IR d) 

with respect to the norm @ ~ llv@ll 1 on D . By continuous exten- 

sion the Gagliardo-Nirenberg i nequa l i t y  ( [1 ,6 ]  and references) 

~ 1 1 -  1 (2 4) II VI ~ IIVVII 1 , ~ = ~ 

s t i l l  holds on a l l  of D 1'1 . By induct ion on k = O, 1, 2, . . .  we 

w i l l  show that for  any f ixed u E Eq 

V k = lul  ~+k ~ = 1 + ~ (2.5) ' p 

belongs to D 1 ' I  so that  the above i nequa l i t y  appl ies. Then the theo- 

rem eas i ly  fo l lows.  

In order to prepare the induct ion proof we recal l  some facts about 

smooth approximations of Lebesgue-integrable funct ions:  

Choose some funct ions × ,n E D such that  

0 < n <  I 

I 
and n(x) = I for  a l l  Ix l  ~ E . 

Then define for  m = 1,2 . . . .  

Xm(X ) = m-dx(mx) and 

supp X , n c { x :  Ix I _< 1} , ]" X dx : I 

nm(X) : n( 1 x) . 
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Clearly ×m' qm E D , ~XmdX = 1 , and qm(X) = 1 

Now for any V E LS(IR d) i t  is known [6,7] : 

on Ix  I _< ½ m . 

V*×m E C~(IR d) and V*Xm --* V in L s a) 

~m : nm(V*Xm) E D (IR d) and ~m --* V in L s b). 

(2.6) 

2q Now suppose u E Eq to  be g i v e n .  C l e a r l y  V o = l u l  ~ b e l o n g s  to  

L~( IR d) and a c c o r d i n g  to  t he  r u l e s  f o r  weak d e r i v a t i v e s  we know 

~7 V o = c~lul V l u l  I17 l u l  II d < f l y  ul l  d 

Hence H ~ I d e r ' s  i n e q u a l i t y  i m p l i e s  by c h o i c e  o f  

f l y  Voll I < ~I I  l u l ~ - l i l p  l l V l u l  II d < ~I I  u l l  ~ -1  11V u II - - q d 

( 2 . 7 )  

t hus  V V o E L 1 

Nex t  we p rove  t h a t  V ° can be a p p r o x i m a t e d  i n  t he  II v.11 1 - n o r m  by the  
f u n c t i o n s  

~o : nm(V o * x  m) (2 8) 
m 

Le t  us w r i t e  v V o - 7 ~  : (1 - qm)V V ° + qm.{VV ° + VVo* Xm } - ( v n ) . ( V o , X m ) .  

Then by H ~ I d e r ' s  i n e q u a l i t y  and the  f a c t  l lnml l  ~ ~ 1 the  f o l l o w i n g  

e s t i m a t e  i s  a v a i l a b l e  

l l VV  o - v ~  11 1 ~ l l ( l - n m  ) v v o l l l +  l lVVo-VVo*Xml[  1+  l lVnml l~11Vo,Xml l  ~ 

1 where  1 = ~ + q . 

S i n c e  vV o E L I , t he  f i r s t  te rm tends  to  ze ro  f o r  m ~ = by dom ina ted  

c o n v e r g e n c e .  The l i m i t  m ~ = o f  the  second te rm a l s o  v a n i s h e s  by s t a t e -  
ment 2 . 6 . a ) .  

S i nce  II Vo*Xmll  ~ i s  bounded and s i n c e  

d 
- -  - 1 

= m 8 d I = d II 7nml l  B l lVn l l  B , ~ - - 

t he  l i m i t  m ~ ~ o f  t he  t h i r d  te rm a l s o  v a n i s h e s .  
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1 
This proves V ~  ~ VV o in L 

Hence i nequa l i t y  (2.4) applies 

and thus V E D 
0 

1,1 

II Voll p ~ ~ llVVoll I 

that  is by i nequa l i t y  (2.7) 

_q 
II ull °~ < c~ p i lVu l l  d c~, p - -d Ilu IIq 

Now we have mp = q + p = r(1) . Therefore i nequa l i t y  (2.3) holds for  

k = I 

3. Our induct ion hypothesis is that for  some k ~ 1 

Vj = lul  m+j E D 1'1 a) 

• 

and II V j l l p  = Ilu I I~+ jp t  ) _< (a) +1 I iu l l~ ( ~ l l V U l l d ) j + l  b) 

(2 .9 )  
fo r  j = O, 1 . . . .  k-1 . 

qk For V k i t  fo l lows V k E L (IR d) with 

= p(m+k-1)  > 1 
qk m+k 

and for  vV k we get 

VV k = (m+k) lul  m+k~l V lu l  = (m+k) Vk. 1 V l u l  

hence by induct ion hypothesis 

l i t y .  

?V k E L 
1 fo l lows from HSlder's inequa- 

Now we proceed as for k = O. This time the smooth approximation are 

~k 
m = qm (V k * x m  ) , m = 1 ,  2 . . . .  

and the relevant estimate is 

IlVV k -  V ~ l l  I ~ I1 (1-  nm) V V k l l l +  IlvV k _Xm,VVk l l l+  ilVnmllq ~ i lVk,×ml tqk 

and we conclude as above since 
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IlVn m llq~ = m 

d 
- -  = 1 

tl Vn llq~ 

with q~k - I = d - - - - d -  p 
1 I d 

qk f : - r - ~  < O .  

This proves V k E D 1'1 so t h a t  by the G a g l i a r d o - N i r e n b e r g  i n e q u a l i t y  

I lVkl l  p _< -~ l lVVk l l  I = ~ II V k . l V l U l  II 1 < ~ l l V k _ l l l p I I V u l l  d 

f o l l o w s .  Thus i n e q u a l i t y  ( 2 . 9 . b )  holds a lso  f o r  j = k . 

Hence t h i s  i n e q u a l i t y  and the s ta tement  V k E D I ' I  hold f o r  a l l  

k = O, i ,  2 . . . . .  The re fo re  the i n e q u a l i t y  in  p a r t  b) of  the theorem 

f o l l o w s .  The i n e q u a l i t y  in pa r t  a) f o l l o w s  from t h i s  us ing the i n t e r -  

p o l a t i o n  i n e q u a l i t y  where the cons tan t  C r i s  e x p l i c i t l y  known. 

The f o l l o w i n g  two c o r o l l a r i e s  p rov i de  some i n f o r m a t i o n  about the d e f i -  

n i t i o n  and some c o n t i n u i t y  p r o p e r t i e s  of  c e r t a i n  N iemytsk i  ope ra to rs  

on E q 

C o r o l l a r y  2.3 

Suppose F i s  a cont inuous f u n c t i o n  IR n ~ IR such t h a t  

-Pk 
I F ( y ) l  _< C ly l  q )- a k l y l  s f o r  a l l  y E IR n (2.10) 

k=O 

wi th  some exponents 

a k s a t i s f y i n g  

d < q < ~ , I < s < co , and some c o e f f i c i e n t s  

1/k  1 
l imsup f ak(~)~ I : ~ < ~ (2 .11)  

k-~o 

A 

Then the N i e m y t s k i - o p e r a t o r  F s assoc ia ted  w i t h  F maps the subset  

{ u E Eq (IR d ; IRn)l ]} 117ull d < R p } = Z R i n t o  LI(IR d) and s a t i s f i e s  

A co P k 
, ,   (u),11 _< bkE ,, d < , ( 2 . 1 2 )  

k 0 
_P 
S 

where  b k = ak(C~)k ( 2 . 1 3 )  

Proof :  For u E Z R the f o l l o w i n g  e s t i m a t e  i s  a v a i l a b l e  by Theorem 2.2 
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^ ~ q+~  k 

IIF(u)l l  I = J" IF (u (x ) ) Idx<  C I 'k~ a k lul dx < 

sqr r(k) _91_ co r(k) S 

< C ;[ a k II lut o lul s II 1<  Cllull~ k~-O a k l l u l l r ( k )  
- k = O  - = 

R k  
~ S 

R 
, 1  

Since by assumption [~ l lVUl ld . ]  s < R this series converges, th is  poves the co l la-  

ry. 

Corollary 2.4 
A 

Under the assumptions of Corollary. 2.4 with R = + ~ the Niemytski operator F is 

sequential continuous as a map from Eq equipped with weak topology into L~o c , 

i .e .  i f  u i ~ u weakly in Eq then F(ui) ~ ( u )  in L oc(R d) 

Proof: I f  a sequence (u i ) i  E N converges weakly in Eq to some element u then i t  

is (strongly) bounded 

sup II ui11 = C < 
i 

and we may assume also u i ~ u almost everywhere on Ad.  By cont inui ty of F i t  
A 

fo l lows F(u i )  ~ ~(u) f o r  i ~ ~ fo r  a lmost  every  x E N d .  Thus the  s t a t emen t  

fol lows from V i t a l i ' s  convergence theorem i f  we can show 

A 
sup II~A F(ui ) l l  1 = H(IAI) ~ 0  f o r  IAI ~ 0 

i 

for  any measurable subset A c N d , IAI < ~ ' ~A tge operator of mul t ip l icat ion by I A. 

Simi lar ly  as in the proof of Corol lary 2.3 we have for  such a set 

~CkZ r(k) A S 
II~A F (u i ) l l l  < l l~AUil l  a k l tu i l l r (k)  

=0 

1 1 1 I f  we observe now that with ~ = ~ -  q+---#> 0 

ll~AUill q < IAll/B11ui II r(1) 
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we get 

o, 
^ sy 117TAF(Ui)II 1 < IAI Iluillr(1) Iluil l~ ~ b k ( ~H~uilld )p k qk=O 

and thus by boundedn~ss of ( u i ) i  E~I in Eq 

sup l l ~A~ (u i ) i l  1 < IAI C 
i 

and by Theorem 2.2 

since the series converges everywhere. Thus we conclude. 

Some examples w i l l  i l l u s t r a t e  the growth r e s t r i c t i o n s  used in the above 

c o r o l l a r i e s .  

Example 1 

Suppose F : IR n ~ R to be continuous sa t i s f y i ng  

IF(y) I  < (a ly lY )  n~ ~ k a ly lY n~-1 y) l  _ z a ly i  Yk = e - z ( a l y l  
k=O (ny +k) !  l=O I !  

wi th 0 < y _< 1 , a > 0 and q = ¥ n  _> d 

Example 2 

The continuous funct ion F : IR n ~ R is supposed to sa t i s f y  for  some 

constants a, b > 0 and some exponents 0 < ~ < 1 , d < q < 

IF(y) i  _< b l y l  q ch(a ly i  Y) 

In both cases we get for  the radius R of convergence for  the series 

defined by the coe f f i c i en ts  b k according to eq.(2.13):  

~ i  for  0 < y < i 
Ry = i n i t e  for  y = 1 

for  y > 1 

Hence these co ro l l a r i es  are conv ient ly  applied for  0 < y < 1 , i . e .  

i f  F is bounded at i n f i n i t e  by some exponential of the form 

a ly l  ~ 
e 
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For the case of a l i near  exponential ( i . e .  y = 1) some more compli- 

cations ar ise.  This case is not yet worked out in d e t a i l .  

I f  we compare the estimates given in Theorem 2.2 with the correspon- 

ding estimates for  the case q = 2 obtained by other methods we see 

that at least  for  q = 2 our estimates are not the best possible 

one's. We comment on th is  point .  

For q = 2 the space Eq coincides with the usual Sobolev space 

H I = HI(IR 2 ; ~n) . I t  is well known that  the FouriertransfOrm can be 

used to characterize conveniently elements of LP-spaces by in tegrab i -  

l i t y  condit ions on t he i r  Fouriertransforms only for  p = 2 . Relying 

on Theorem 5.3 of reference [9] th is  fact  can be used to give a 

simple proof of the fo l lowing i nequa l i t i es  

2 2 
(2.14) llull r ~ ~(r) IlUlll, 2 u E H I , IIull ,2 : II ull 2 + Ilvull 2 

for  a l l  r > 2 with 

-3( .~ )  . + 3 ( _ 7 )  
~(r)  = 2 ~ r (r  -2)  , (2.15) 

hence ~(r)  ~ c r 1/2 with some constant c > 0 while i nequa l i t y  

(2.3) says 

flu II r ~ const r IIUIll, 2 (2.16) 

which is a weaker estimate. 

Therefore one expects that the estimates of Theorem 2.2 can be impro- 

ved also for  the cases q > 2 . However for  q > 2 the convenient 

Fouriertransform method is not ava i lab le .  So a more general approach 

has to be used, may be along the l ines of the method used for  the 

Moser-Trudinger i n e q u i l i t y  [1,6,8]  . 

We consider some examples. For q = 2 , a > 0 , and 0 < ~ < 2 choose 

n -1 
F(y) e alylY Y y)k = Z ( a l y l  ( 2 . 17 )  

k=O k! 
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w i t h  y . n  ~ 2 .  R e l y i n g  on ( 2 . 1 4 )  (2.15) we get for a l l  u EH 

A 

II F ( u ) I I  1 < 
- k=n 

Y 

k ~k Yk 
a ~ ( y k )  l l U l l l ,  2 -El-. 

and we see, using d e f i n i t i o n  

sa t i s f i es  

R : R : l i i n i t e  

2.11 , that the radius 

for  0 < y < 2 

for  y = 2 

for  y > 2 

R of convergence 

(2.18) 

We mention another example: 

F(y) : ly l  q ch a ly l  Y , a >0 , q > 2 , 0 < y < 2  . ( 2 . 1 9 )  

For q = 2 we can proceed as above to obtain (2.18) also in th is 

case. For q > 2 however when we re ly  on Corol lary  2.3 we get accor- 

ding to our example 2 from above for  y = 1 and a l l  B > 0 with 

a ~) Eq A = B -~ ( I  + < 1 ,  u E , u # 0 : 

' ° '  

( 2 . 2 0 )  {R 2 l u l  q e ~ P ~ ' ~  ) + e dx < 2TI - 

w h i l e  f o r  0 < ~ < 1 

t h e n  R = 

the in tegra l  is f i n i t e  for  a l l  B > 0 since 

I I I .  Solut ion of some two dimensional vector f i e l d  equations 

As we w i l l  see the class of spaces Eq introduced in the las t  section 

is well adapted to look for  so lut ion of equation (1.1) in them for 

d = 2 . According to the behaviour of the non l i nea r i t y  near y = 0 

the exponent q > 2 has to be f i xed.  

So f i r s t  we l i s t  our hypotheses on the non l i nea r i t y  

(H O) g : IR n ~ IR n i s  c o n t i n u o u s  , g(O) : 0 , 

g ( y )  : g rad  G(y )  f o r  y @ 0 

g • 

such t h a t  

f o r  some p o t e n t i a l  G . 



(H 1 ) 

(H 2 ) 

(H 3 ) 

(H i) 
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G : IR n ~ IR is continuous, of class C 1 in IR n~{O}, 

G(O) = 0 , G(y) > 0 somewhere. 

G admits a decomposition G = G+ - G_ with continuous non- 

negative funct ions G± , G±(O) = 0 , such that  there ex is ts  

an exponent q > 2 and a constant b > 0 wi th 

( i )  b ly l  q ~ G_(y) for  a l l  y E IR n 

( i i )  G+(y) ~ o ( l y l  q) for  [yl ~ 0 . 

Y l ~ l y l i g ( y )  I s a t i s f i e s  the growth r e s t r i c t i o n s  as expressed 

by statements (2.10) and (2.11) wi th  R = + 

G(.) sa t i s f i e s  the growth r e s t r i c t i o n s  of assumption {H3) . 

Remarks 

a) According to (H2) the potent ia l  G is negative near y = 0 , 

more prec ise ly  G(y) 5 "c l y  lq for  a l l  s u f f i c i e n t l y  small ly l  

wi th some constant 0 < c < b Hence th is  assumption is a par t i cu -  

l a r  case of the corresponding assumption in [3] 

b) By the examples mentioned in section I I  we know that  assumption 

(Hi) admits po ten t ia ls  G which grow nearly l i ke  a l i nea r  expo- 

nen t i a l .  More prec ise ly  (Hi) allows 

iG(y) l  < c ly l  q e a ly lT  _ for  l y l  ~ ~ 

wi th some constants a, c > 0 , and some exponent 0 < y < 1 . 

For q = 2 we can allow 0 < y < 2 according to our remarks in 

the previous sect ion. Hence th is  assumption is considerably more 

general then the corresponding one of a polynomial bound. 

According to these assumptions we decide to look for  so lut ions in the 

Banach space Eq = Eq(IR 2 ; R n) where the exponent q ~ 2 is given 

by assumption (H2) 
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When looking for weak solutions of equation (1.1) one c lear ly has to 

ensure that the 'potent ia l '  is d i f fe rent iab le  in some sense. I t  turns 

out that essent ia l ly  the weakest notion of d i f f e r e n t i a b i l i t y  which is 

natural in this context is su f f i c ien t  for our purposes. So a f i r s t  

lemma states the existence of l inear continuous G~teaux-derivatives in 

a l l  directions v E C o (IR2; ~n) for a l l  points where i t  is defined. 

Lemma 3.1 

Under the assumptions (Ho), (HI),  and (H3)  the functional 

V(u) : : S G(u(x)) dx , u E D(V) 

D(V) = {v EEql G(u(.)) E LI(IR 2 )} 

has l inear continuous G~teaux-derivatives V'(u;v) at every 

in a l l  directions v E C O (IR 2 ; ~n) given by 

V'(u;v) = f g(u) • v d x 

3.1) 

u E D(V) 

(3.2) 

Proof: The standard versions of such a d i f f e r e n t i a b i l i t y  result assume 

some polynomial bound for g and G (see [4,5] and references there). 

So they don't apply d i rec t l y .  However i f  we take into account the basic 

inequal i t ies from Theorem 2.2 i t  is not hard to show that the proof 

of Proposition 2.5 in [4] can be extended to the present case. 

The estimates for the term 

A 
I I  g (u) -V [x ~ lu l  ] I I  1 

( [ k ~  l u l l  = c h a r a c t e r i s t i c  f unc t i on  of the set  {x E ~2 IX ~ l u ( x ) l } )  

used there  can be done in analogy w i th  the es t imate  fo r  

A 

II G+(fj)[k < I f j l ] l l  I 

for X ~ ~ which w i l l  be given e x p l i c i t l y  la ter  in the proof of Theo- 

rem 3.3. 
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Lemma 3.2 

Suppose g sa t i s f i es  (Ho), (H1), (H3), and 

g- l (o)  c {0} U{y E IR n i6 < ly l }  (3.3) 

for some ~ > 0 . I f  for  u E Eq 

A 
g ( u )  : o 

holds in the sense of d is t r ibu t ions  then the function u vanishes : 

U = 0 • 

Proof: This resul ts  follows from the observation that weakly d i f fe ren-  

t i ab le  functions have no f i n i t e  jumps [3] . Relying on [3 ' ]  a com- 

plete proof is given in [5] . By our assumptions on g we know 

~(u) E L#o c for every u E Eq , hence ~(u) = 0 almost everywhere on 

IR 2 . By the assumption about the zeros of g th is  equation can hold 

only i f  lul had a jump of height at least ~ . Thus u = 0 fol lows. 

Remark 3.1 

a) Assumptions (Ho), (H1), and (H3) imply assumption (Hi) 

b) Hypotheses (Ho) - (H2) imply assumption (3.3) 

Theorem 3.3 

I f  the assumption (Ho) - (H2) and (H3) are sa t i s f i ed  then the equa- 

t ion (1.1) has a nont r i v ia l  solut ion in Eq. 

Proof: Step 1: Construction of an appropriate minimizing sequence: 

By our assumptions and de f i n i t i on  (3.1) the fo l lowing minimization 

problem is well defined: 

I = in f  {K(v) : ~ II v vll I v ED(V), v # O, V(v) ~ O} 

and there is a minimizing sequence 
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f j  E D(V), f j  # O, V(f j )  > O, I : lim K( f j ) .  (3.5) 

Because of the covariance properties 

K(vo) = K(v), V(vo) = o-2V(v), vo(- ) : v(o.) 

we may assume in addition for all j E 

(3 .6 )  

II f j l lq  = I (3.7) 

Hence we get the following chain of inequalit ies using f i r s t  part i )  

and then part i i )  of assumption (H2) : 

A A 

b < J" G_(fj)dx < J" G+(fj)dx _< 

A A A 
_< f [ I f j l<~]G+( f j )dx + ~ [~_<Ifjl<X]G+(fj)dx + f[X<If j l ]G+(fj)dx 

! a(s) + C ,~ 1 [ ~ 5 1 f j l s X ] l  + Jx( f j )  (3 .8 )  

where by part ( i i )  

G+(y) ! a(E) lyl q for lyl < 

with a(s) ~ 0 for ~ ~ 0 and where 

C ,~ = sup { G + ( y ) I .  s5  ly l  5 ~} < ~ 

The Lebesgue measure of a measurable set M is denoted by 

The third term in (3.8) is controlled by assumption 

A co 

f [ ~< I f j l ]  G+(fj)dx _< f ( [ ~ < I f j l ]  z 
k=O 

oo  ~ r(k) 
< z a k I I [ ; k < l f j l ] l f j l  I f j l  s i i 1 <  

k=O 
_% ~ r(k) 

~ ak " 5 "  s _< l l [ ~ < I f j f ] f j  II ZO= r(k) 

ak(f j ) 

IMI. 

(H3):  
q+--2 k 

s ) dx 
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By Theorem 2.2 we have 

(3.9) 

where ~ = 1 + q/2 , hence 

J~( f j )  ~ li[X < I f j l ] f j  I I ~  k~O bk (½K( f j ) )~  (3.10) 

with b k according to def in i t ion (2.13) 

Since ( K ( f j ) ) j  E • is bounded Theorem 2.2 implies that ( l l f j l l r )  j E 

is bounded for every r > q 

1 1 + 1 we know Therefore for fixed r > q, ~ = ~ ~, 

II [ X < l f j l ] f j l l q  5 I [ ~ < l f j l ] l l / T I I f j  II r 5 C I [X<I f j  I ] I1 /T  5 C'~ 

since 1 = t l f j  II~ ~ II [ ~ < I f j i ] I f j l q l l  1 ~ ~ q i [ ~ < i f j l ] l .  

_q  
T 

By assumption (H3)  the series in inequali ty (3.10) converges every- 

where on ¢ . Thus we get 

sup Jk ( f j )  --~ 0 for k --~ ~ (3.11) 
J 

Hence there are 0 < ~ < ~ < ~ such that by inequali ty (3.8) 

b t[~ < i f j l  < k] i  7 ~ C~,k - - 

holds for every j E ~ . Now we can use the lemma of concentration by 

translat ion [3,5] to conclude as in [3] that there is a minimizing 

sequence (u j ) j  E ~ and an element u E Eq such that 

uj ~ u for j -* 

a) weakly in Eq 

b) almost everywhere on IR 2 

c) u ¢ 0 . 

(3.12) 
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Step 2: We are going to show that the l im i t  function u according to 

statement (3.12) actual ly  is a solut ion of the d i f f e r e n t i a l  equation 

(1.1) .  

Inequal i ty  (3.8) implies in pa r t i cu la r  

sup i i )  dx < 
i E ~ 

A 

Thus by (3.12.b) and Fatou's lemma we get G+(u) E LI( IR2).  
A 

By V(uj) = V+(uj) - V_(uj) ~ 0 we get in the same way G (U)E LI(IR2) . 
A 

T h i s  p r o v e s  G(u)E L 1,  i . e .  u E D(V).  
^ 

I f  a l s o  V(u) = f g ( u ) d x  ~ 0 were  known t h e  l i m i t  f u n c t i o n  u would  

be a non t r i v i a l  m i n i m i z e r .  In  t h e  c a s e  o f  s c a l a r  f i e l d s  (n = 1 )  i t  

is easy to prove V(u) ~ 0 (see la te r  remark). Here instead i t  is 

shown d i r e c t l y  t h a t  a s u i t a b l y  s c a l e d  v e r s i o n  o f  u i s  a weak s o l u t i o n  

o f  ou r  e q u a t i o n  ( w i t h o u t  showing  f i r s t  V(u) ~ 0 ) .  

Take a f ixed v E C O (IR 2 ; A n) with compact support K and apply 

Corol lary 2.4 to the sequences (~KUi)i E N and (~KUi +v ) i  E IN. 

A A 

Since ~KG(Ui ) = G(~KUi) 

A A 

that G(~KUi) ~ G(~ K u) 

hence 

but  

th is  coro l lary  implies 

in LI(IR 2) and s im i la r l y  

A A 

G(~KU i + v) "* G(~KU +v ) ,  for  i ~ ~ ; 

A A A A 

G(~KU i + v) G(~KUi) , G(~KU +v) G(~KU ) 
i ~  

+ v) - = aCu + v) - 

in L I (3.13) 

and therefore (3.13) proves 

V(u i + v) - V(ui) , V(u + v) - V(u) . 
i ~ 

(3.14) 

Now using the d i f f e r e n t i a b i l i t y  resu l t  of Lemma 3.1 one can show jus t  

as in [3] that there is some ~ > 0 such that 

(IR 2 V ' (u;v)  : ~K'(u;v) for  for al l  v E C o ; A n) (3.15) 
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I f  X = 0 then Remark 

This cont rad ic t ion proves 

: u , o = V-T 

and obtain a n o n t r i v i a l  weak so lu t ion ~ : 

V ' (u ;v )  = K ' (u ;v)  for  a l l  

3.1b and Lemma 3.2 imply u = 0 . 

X > 0 and we may rescale u according to 

v E C ~° ( 3 . 1 6 )  
o 

Remark 3.2 

a) In the case of scalar f i e l ds  (n =1) and an even potent ia l  G sphe- 

r i c a l l y  symmetric rearrangement of funct ions can be used. Then i t  suf- 

f ices to r e s t r i c t  to the subspace of spher i ca l l y  symmetric (nonincrea- 

sing) funct ions in Eq . 

In th is  case for  q =2 (the ' pos i t i ve  mass' case) the existence of 

i n f i n i t e l y  many solut ions has been stated in [2] for  a class of po- 

t e n t i a l s  which are bounded at i n f i n i t y  by 

e a ly lY , a > 0 , y = 2 . (3.17) 

Taking into account the comments on the case q =2 at the end of sec- 

t ion  2 i t  is not hard to see by (2.14) - (2.15) that Theorem 3.3 

can eas i l y  be extended in the vector f i e l d  case for  q =2 to cover a 

non l i nea r i t y  sa t i s f y i ng  (3.17) wi th 0 < ~ < 2 . For y =2 the ra- 

dius of convergence of the relevant power series is f i n i t e  according 

to (2.18);  th i s  allows only to t rea t  those cases for  which i t  is pos- 

s ib le  to f ind  a minimizing sequence of elements wi th s u f f i c i e n t l y  small 

HI-norms. This point  is s t i l l  under i nves t i ga t i on .  

b) Recall from [6] , Theorem 8.8 that the basic step of the e l l i p -  

t i c  r egu la r i t y  theory applies i f  g(u) E L oc is known. The fo l lowing 

Lemma provides th is  informat ion.  
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Lemma 

I f  the c o n t i n u o u s  f u n c t i o n  g s a t i s f i e s  h y p o t h e s i s  

A E L 2 any u E Eq(IR 2) : g(u) ''~IR2j. 

(H 3 ) then f o r  

P roo f :  By (H3) one has 

co 

~R 2 I~ ( u ) 1 2 d x  < ~- a k a I II lul 2(q- I )  + 2k+ 21 s T 111 
- k , l  = 0 

I f  q ~ 2 then q' = 2(q - 1) ~ q so that we can apply the estimates 

, = q ,  of Theorem 2.2 for r k +2k, i .e .  r '  = 2(r k -1)  , where 
2k 

r k = r(k) = q + 2k . Hence with ~' = 1 + ~ = q we have 

r2k c~' ~ q' 1½ I (2k) il u r~ k < ( ) k l lU i lq ,  llXTuli 2 

and thus  by H ~ I d e r ' s  i n e q u a l i t y  and Theorem 2.2 (observe  Eq ~ Eq, 

f o r  q < q ' )  

,, ,u ,2(q .1)+2k+21 2 
- -  s--If 1 < II luJ q-l+ kll2111ul q-l+ II 2 

r I i 

q ' / s  2k/s  r21 /s  1/s 1/s q' 
< l l U l l q , ( ~ , ) 2  k (~, Ak+ 1 - ' l l u i l r ~ l  )21 < liUllq i lu l l r~  k 

2 /s  
where A = (½ iIV u i l 2 )  

Th i s  proves f i n a l l y  
A 

l l u l l q  -1 
co  

II ~(u)1~ 2 < z 
2 ( q - l )  k :0  

2/s i / k  
s i nce  l im  sup ia (~) I -= 0 

k ~  k k 

i / s  I / k  
i m p l i e s  l im  sup ] ak (q )2k  I = 0 

k - * ~  
so t h a t  the above s e r i e s  converges f o r  eve ry  A E 

1/s Ak 
ak(q)2k < ~ , 

T h e r e f o r e  by Theorem 8.8 of  [6 ]  i t  f o l l o w s  t h a t  a weak s o l u t i o n  u 

W2,2 of  e q u a t i o n  ( i . I )  in  Eq a c t u a l l y  be longs  to loc  n Eq. 

Hence such a s o l u t i o n  so l ves  t h i s  e q u a t i o n  in  the sense of  e q u a l i t y  a l -  

most everywhere on IR 2 . 
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c) In analogy with method explained in 

case equations of the form 

[4] for the d> 3-dimensional 

- A u ( x )  : g (x ,u(x ) )  

u : IR 2 ~ IRn, g : IR2x IR n ~ IR n , n > 1 

can also be treated in the spaces Eq(IR 2 ; R n) and for some classes 

of examples the existence of a (weak) solution can be proven. 
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1 INTRODUCTION 

We consider the Cauchy problem (initial value problem) for nonlinear Schr6dinger equations 

in R n, of the form 

iut + Au = g(u) , u(0, .)  = r0(.) . (NLS) 

Here u is a complex-valued function defined on [O,T)xR n for some T>O, ¢p is some initial condition 

defined on R n and g is some nonlinear (local or non-local) mapping. In most of the examples that have 

been considered, g has some symmetry properties and is also the gradient of some functional G. Thus: 

at least formally, we have both conservation of charge and conservation of energy, that is 

f Ju(t,x)[ dx = f [~x)[ 2dx , 

R n R n 

.~ ]Vu(t,x)[2dx + G(u(t,')) 

R n 

= I ()l.V(p.x_2dx + G(q)(')) 
o 

R n 
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Clearly, the charge and energy involve the Hi-norm of the solution and therefore it is important to be 

able to solve the local Cauchy problem in the space HI(Rn). Indeed, when this is possible, then global 

existence results follow easily from the above conservation laws and some conditions on G (for 

example G>-0). Obviously, in order to be able to do so, there are some necessary requirements on g; 

for example, g and G need to be well defined on H 1. In the applications, this will impose some 

"growth" conditions on g. 

The initial value problem for the nonlinear Schr6dinger equation in H 1 has been studied in 

the past few years, essentially by J Ginibre and G Velo [5,6,7,8] and by T Kato [9]. In the model c~tse 

where g(u)=lulP-lu, the Cauchy problem is well posed in HI(R n) for l<p<(n+2)/(n-2). The methods 

are of a perturbative nature and rely basically on sharp dispersive properties of the linear equation. All 

the previous proofs require at some stage (for obtaining local estimates of the solution in HI(Rn)) 

differentiation of the equation with respect to x, and so they don't apply to nonlinearities for which the 

x-dependence is not smooth enough. For example, the results mentioned above do not cover the case 

where g(u)=[ulplu+Vu, V being a non-smooth potential. 

We present here a result that covers most of the previously known cases and that holds 

without any smoothness assumption on g(u) with respect to x. The proof proceeds by an 

approximation argument followed by a passage to the limit. Uniform estimates on the approximating 

solutions are obtained from the conservation of the energy, and the passage to the limit (as well as 

uniqueness) relies on the dispersive properties of the linear Schr6dinger equation. Let us remark that 

we do not need the consercation of charge (g does not have to satisfy the corresponding symmetry 

properties) while we definitely need the conservation of the energy (g must be the gradient of some 

potential G). This is in contrast with the result of [9], which applies to local nonlinearities for which 

there is possibly no energy (but that are sufficiently smooth with respect to x). 

In section 2 we state the main result and we give some examples of applications, and in 

section 3 we give a sketch of the proof. The reader is referred to [3] for the complete proof and to [2,4] 

for some related results in the critical case where the present method just fails. 



2 THE MAIN RESULT 

6J 

We begin by introducing some notation. We denote by H k the Sobolev space Hk(Rn,C) for 

any integer k, equipped with its usual norm and scalar product (always considered as a real Hilbert or 

Banach space) and by I2  the space LP(Rn,C) for any p~ [1,,,~], also equipped with its usual norm. We 

denote by II IIHk (respectively II IILP) the norm in H k (respectively I_P), and by <,  > the duality pairing 

between H -1 and H 1 . p' is the conjugate exponent of p ,  given by 1/p + 1/p'= 1. For a given (pEH ~ , 

we are interested in the initial value problem (NLS). 

We now state the assumptions on the nonlinear interaction g. We assume that g is of the form 

N 
g = Z g k ,  where gke C(H1,H-1). For each of the gk' we assume the following. There exists a function 

k=l 

Ck~ C(R+,R+), two numbers rk ,P~  [2,2n/(n-2)) (rk,pK~ [2,~) if n=l,2), and a sequence 

gk,m e C(L~,L 2) such that 

gk,m(0)=0 and gk,m is Lipschitz continuous from bounded sets o fL  2 to L z. (1) 

gk, m "~ gk in L (pk)' as m--+~, uniformly on bounded sets of H 1. (2) 

There exists Gk, m~ CI(L2,R) such that Gk,m(0)=0 and gk,m=(Glqm) '. (3) 

I[gk.m(V)-gk,m(U)[JL(pk)' ~ Ck(M)llv-UllLrk for u ,w H 1, with IluHHa~Vl and HV[IHI~. (4) 

1 

From (3) we have Gk,m(U ) = I <gk, na(SU)'U> ds,  for every u~ H 1. Thus, if we set 
o 

1 

Gk(U) = I <gk(SU)'U> ds, (5) 
0 

then from (2), (5) and the embeddings H i c  L rk, L(Pk)'c H -1, we get 

Gk,m--) G k as m--+~,, uniformly on bounded sets of H 1. 

Finally, let us define the functionals G, G m, E and E m by 

(6) 
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N 
Gin(u) = ~ Gk,m(U ) for u~ FI 1 , 

k = l  

N 

G(u) = ~ Gk(U) for u~ H 1 , 
k ~ l  

E m ( u ) = l ~  IVu(x){ 2(:Ix + Gin(u) f o r u ~ H  1 

R n 

E ( u ) = l ~  ,Vu(x)12dx + G(u) fo ru~Fi  I . 

R" 

We can now state our main result. 

(7) 

(8) 

(9) 

(10) 

THEOREM 1. Assume that g satisfies the above hypotheses. Then for any ¢p~H 1, there exists T*>0 

and a solution ue C([0,T*),FI1)nCI([0,T*),I-1-1) of (NLS). In addition, we have the following 

properties. 

(i) u is unique in C([0,T')M 1) for any T'>0, 

(ii) either T*=~ or else T*<** and Ilu(0}IH1---> ~,, as t TI'*, 

(iii) E(u(t)) = E(cp), for every te [0,T*). 

Several remarks and comments are in order, concerning both the hypotheses on g and the statement oi 

Theorem 1. 

REMARK 1. It follows from conditions (1) and (2) that g(0)=0. We assume this only for the sake of 

simplicity.Allowing g(0)~0 would result in adding a constant term ¢p~H -1 to the right hand side of 

(NLS), which would not be too difficult to handle. 

REMARK 2. We assume that g is split into N terms gk satisfying different conditions. This is rather 

natural since in the applications (see below) the nonlinearity can be the sum of several terms having 

properties that are actually different. 

REMARK 3. When applying Theorem 1 to some particular example, what is given in general is g as 

the sum of several terms gk" One would expect to need only assumptions on the gk's. However, our 

assumptions ((1) to (4)) are on some approximating sequence gk, m, which seems somewhat unnatural. 
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This phenomenon comes from the following technical difficulty. In the proof, we need to approximate 

gk by some sequence gk,m satisfying (1) and (2). So if we assume only that gk satisfies (4) and is the 

gradient of some functional GI~ C 1 (i_11,R), we have to find some approximate sequence satisfying (1) 

and (2), and this is not obvious. For example if we think of gk,m(U)=pm,gk(pm.u) where Pm is a 

sequence of mollifiers, then gk, m will satisfy (1) to (4) except that the convergence in (2) will not be 

uniform on bounded sets of  H t. However, let us point out that the approximating sequence is easily 

found in the important examples (see below). 

REMARK 4. The solution of (NLS) does not need to satisfy the conservation of charge. However, i! 

we assume in addition to the other hypotheses that <g(u),iu>=0 for every u~ H 1, then we get 

conservation of charge. This is easily seen by multiplying the equation by iu, in the sense of the duality 

between H -1 and H l. 

REMARK 5. Some global existence results are easily obtained from property (ii) of Theorem 1, 

conservation of energy and conservation of charge (if any). See [5,6,7,8], [9] and the examples given 

below. 

Let us now give some examples of nonlinearities that satisfy the hypotheses of Theorem 1. 

EXAMPLE 1 (external potential). Let V be a real-valued function on Rn; Assume that V~ L~+L ~, with 

0>1, o>n/2. Let g be given by g(u)=Vu for u~H 1 and let V=Vt+V2, with VI~L ¢~ and V2EL ~. Then 

g=gl+g2 with gl(U)=VlU and g2(u)=V2u. Now choose r l=Pl=2a/ (o-1) ,  r2=P2=2, and sel 

Vl,m(x)=Min{m,Max{-m,Vl(X)}}, gl,m(U)=Vt,mU and g2,m=g2. It is easily verified that g satisfies the 

hypotheses of Theorem 1 with 

Gk'm(U) = 2 f Vk'm(X) lu(x){2 dx . 
R n 

In this case, we always have global existence and conservation of charge. 

EXAMPLE 2 (Hartree-type nonlinearity, see also [7]). Let W be a real valued even function on R n. 

Assume that WE LS+L ~ with 5>1, 8>n/4. Let g be given by g(u)=(W,lul2)u and let W=WI+W2, with 

Wl~ L ~ and W2~ L ~. Then g=gl+g2 with gl(u)=(Wl.lUr2)u and g2(u)=(W2,1ur2)u. Now choose 
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r1=P1=48/(28-1), r2=p2=2, and set Wl,m(x)=Min{m,Max{-m,Wl(X))}, gl,m(u)=(Wl,m, lul2)u and 

g2,m=gr Applying Young's inequality, it is easily seen that the hypotheses of Theorem 1 are fulfilled 

with 

1 2 
G~m(u ) = ~- ~ (Wk, m*lu [ ) lul 2 dx . 

R ~ 

In this case we always have conservation of charge. All the solutiuons are global if, for example, the 

negative part of W belongs to LV+L ~, with v=l  if n=l, v>l  if n=2 and v=n/2 if n>_3. 

EXAMPLE 3 (local nonlinearity, see also [5,6,8] and [9]). Let f:RnxC--~C be a measurable function. 

Assume that f(x,0)=0 almost everywhere and that there exists M>__0 and cc~ [0,4/(n-2)) (0cE [0,oo) if 

n=l,2) such that If(x,z2)-f(x,zl)l < M(l+lzlla+lz2la)lz2-zxl for almost all xa R n and all z1,z2E C. 

Assume that f(x,z)=(z/lzl)f(x,lzl). Let g be given by g(u)(x)=f(x,u(x)). Then g satisfies the hypotheses 

of Theorem 1. Indeed, a family gk,m is easily found. For example, let fl and f2 be given by 

fl(x,z)=f(x,z) if [zl<l, fl(x,z)=zf(x,1) if Izl>-l, f2=f-fl . Let fl,m=fl and let f2,m be defined by 

f2,m(x,z)=f2(x,z ) if Izl<m, f2,m(X,Z)=(z/m)f2(x,m) if Izl>_m. Let the function Fk, m be defined by 

Izl 

Fk,rn(X,Z) = J fk,m (x's) ds. 
0 

Then a suitable sequence gk, m is given by gk,m(U)(X)=fk,m(X,U(X)) and 

Gk,m(u) = ~ Fl:,ra(X,U(X)) dx. 
A 

R n 

Here also we have conservation of charge. The solutions are global for all the initial data if for example 

s 

~f(x,(~) do >- C C s a for all s>-0 and for 8~ some [0,1+4/n) 

0 

EXAMPLE 4. It is quite clear that if gl, g2 ..... gJ satisfy the hypotheses of the Theorem, then so does 

g=gl+g2+...+gj . Therefore Theorem 1 applies when the nonlinearity is any finite sum of the 

nonlinearities considered in the examples 1, 2 and 3. 
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3 SKETCH OF "lTqE PROOF. 

The dispersive properties of the Schr6dinger equation that we need are described in the 

following Lemma. 

LEMMA 1. Let r ,pe  [2,2n/(n-2)) (r ,pe [2,~] if n=l  and r, p e  [2,~,) if n=2) and q,Te (2,oo] 

(q,Te [2,,~] if n= 1) with 2/q=n(1/2-1/r) and 2/y=n(1/2-1/p). Let T>0, u0E L 2 and fe L3"(0,T,LP'(Rn)). 

Then there exists C depending only on n,r,p such that the solution u of 

iu t + A u = f  , u(0)=cp, (LS) 

satisfies 

llullgq(o,T, Lb -< C (llflILV'(O,T, LP') + {ItPIIL2) • (11) 

Lemma 1 is proved in [8] for f-=0 and in [10] (see also [9]) in the special cases r=p, r=2, p=2. The 

general case follows by interpolating between two of these three cases, depending on whether r>p or 

r<p (see [2] for a suitable interpolation theorem). 

REMARK 6. It is immediate from Lemma 1 that if f=fl+.. .+fM, where each of the fj satisfy the 

assumption of the lemma with exponents ('~,pj), then 

M 

IlUllLq<O,T,ff ) ~ C ( ~ IIf~tl c~)' c~J)' ÷ IIq~ IlL2 ) 
j=l L (O,T,L) 

Now we can proceed to prove Theorem 1. We assume that g satisfies the hypotheses and we 

consider q)e Hk For me N we consider the solution u TM of the problem 

i(um)t + Aum = gin(urn) , urn(0, ') = ~p(.) , (NLS,m) 

where  g m = g l , m + . . . + g N ,  m It is not tOO difficult  to prove (see [3]) that 
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ume C([0,Tm);H1)f3CI([0,Tm),}'1-1) for some Tin>0 and that we have 

Era(urn(t)) = Em(cp), for every t~ [0,Tm). (12) 

The next step is the following. 

LEMMA 2. There exists TI>0 depending on IIgIIH 1 such that IIuraIIL~(0,T1,H1 ) < 2 I{~0IIH 1 . 

PROOF. Let [0,Tm] be the maximal interval on which Ilum(;)l[H 1 < 2 11911H1. All we need is a positive 

lower bound on Tm. Now it follows from (4), (1) and the equation that II(um)tllH-1 is bounded on 

[0,Tm] by some K independent of m. Therefore, there exists a constant K' such that 

Ilum(t)-91[L 2 < K' t to2 , for t~ [0,Tm]. (13) 

From (12) we obtain 

(llum(t)LIH1) 2 = (llq011nl) 2 + Gin(q0) - Gra(um(t)) + (l[um(t)llL2) 2~ (llq011L2) 2 . (14) 

In (14) now, we estimate the L 2 terms using (13) and the G m terms using (4). Together with 

Gagliardo-Nirenberg and Sobolev's inequalities, we get for some K" independent of m, some 5>0, 

and for, say, t<l,  

(llum(t)[lH1) 2 ~ (llq0llH1) 2 + K" t ~ . (15) 

(See [3] for the details of this calculation.) For t less than some T0>0, the right-hand side of (15) is less 

than 4(llq011H1) 2 , and so T m is bounded from below by T O . 

The next/_emma is crucial for the passage to the limit. 

LEMMA 3. u TM is a Cauchy sequence in C([0,T2],L 2) for some T=>0 depending on IIq011•l • 
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PROOF. Let j,me N. From (NLS,j) and (NLS,m) we obtain (uLum)(0)=0 and 

N N 
i (uJ-um)t + A (uJ-u ra) = Z (gLj(uJ)-glq (urn)) + Z (gLj (um)-gk,m(um)) " 

k=l k=l 

Let re [2,2n/(n-2)) (re [2,~) ff n=l,2) and qe (2,o0] with 2/q=n(1/2-1/r). We apply Lemma 1 and 

Remark 6 to estimate (uJ-u m) in Lq(0,T,Lr(Rn)), for some T<T r To this end we introduce the 

exponents Tk given by 2/Yk=n(1/2-1/pk), and we estimate the terms (gk,j(uJ)-gk,3(um)) and 

(gk,j(um)-gk,m(Um)) in L(Y~)'(0,T,L(Pk)'(Rn)). By Lcmma 2 and (2), we obtain 

N 

Z Ilgkj(Um)-gk,m(Um)llL(C0.(0,T,L~Ok). ) ---) 0 as j,m---~. 
k=l 

We estimate the terms (gkd(uJ)-g~j(um)) by using (4) together with H61der's inequality on (0,T). This 

yields 

N N 

Z [{gk,j(uJ)-gk,j (um)[[ (~)'0 (pk)' ----" C Z T~k []uJ-um]]Lqk(0,T,L rk) 
k=l L ( ,T,L ) k=l ' 

where C is some constant depending o n  IIq)l{H1 , qk is given by 2/qk=n(1/2-1/rk), and O~=(qy2)/qk >0. 

The choice of (q,r) is arbitrary, so we choose successively (q,r)=(oo,2), and (q,r)--(qk,rk) for 

k=l,...,N. Adding the resulting inequalities, and choosing T small enough (depending on []q)[[H1), we 

find that 

M(T) -< e(j,m) + (1/2) M(T), 

where E(j,m)--~0 as j,m--~oo and 

N 

M(T) = [{UJ-Um{IL~(0,T,L2) + ~I]UJ-UmIILqR(0,T,L~) . 
k=l 



Hence the result. 
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We are now in position to complete the proof of Theorem 1. First, uniqueness is obtained 

with the same technique as in the proof of Lemma 3 since the gk's satisfy the same estimates as the 

gk,m'S do. Now we consider the sequence u m defined above, and we let T-Min(T1,T2) where T 1 and 

T 2 are given by Lemmas 2 and 3. Let u be the limit of u m in C(0,T,L2). From the uniform H 1 bound 

on the u m , we get also ue L~(0,T,H 1) and by Sobolev's inequality, um--->u in C(0,T,L r) for any 

re [2,2n/(n-2)) (re [2,,0) if n=1,2). Therefore, it follows from (2) and (4) that gm(um)--->g(u) in 

C(0,T,H'I). Thus u solves (NLS) in L~(0,T,H-1). Now, from (4), (6), (12) and the weak lower 

semicontinuity of the HLnorm we obtain that E(u(t)) _< E(q0) for te [0,T]. Reversing the sense of time 

and using uniqueness we obtain the same property for w(s)=u(t-s), se [0,t], and in particular we get 

conservation of the energy (property (iii)). Therefore, the map t-->llu(t)llH 1 is continuous. Since u is 

weakly continuous in H l, it follows that in fact u~ C(0,T,H 1 ) and then also that ue CI(0,T,H-1). 

Thus we have established the existence of the solution described in Theorem 1 (all properties 

except (ii)) on an interval [0,T] where T depends only on IIq)[IH 1 . We now extend u to be a maximal 

solution on [0,T*) and property (ii) follows easily. This proves Theorem 1. 
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The Cauchy problem f o r  the D i rac  equa t i on  w i t h  

cub ic  n o n l i n e a r i t y  in  t h r e e  space d imensions 

Jo~o-Paulo  Dias and M~rio F i g u e i r a  

CMAF 

2, Av. Pro f .  Gama P in to  

P-1699 L isboa Codex 

I .  I n t r o d u c t i o n  

Let  us c o n s i d e r  the n o n l i n e a r  D i rac  equa t i on  in IR x ~3 

~# - i a  V@ + mS@ + k(~+B@)~ ( l . l )  i ~ = . 

= ~ ( t , x ) ,  m > O, kc ~ ,  
3 ~ 

where m.V@ = X a. - -  , 
j = l  J ~xj  

:[i o° ol oo io if'  2;ii °° o _io oo oi -I' = [! o l o_io oo_ oo ii 
--T 2 = = • f o r  j # m) (mj = a j  = a j ,  a j  I ,  a j  a m -a m aj  

°°oIo_Ioo_°I 

and @: ~ x ~3÷ ~4 is a column v e c t o r  ( ~ i , 0 2 , 0 3 , ~ 4 ) ,  0 ~ = F T. We put 

!0[ 2 = @fO. The o p e r a t o r  A = - i a . V  + mB is  s e l f - a d j o , i n t  in ~2=(~( IR3))4  

w i t h  domain H I We can c o n s i d e r  the  u n i t a r y  group S ( t )  = e - i t A ( t ¢ ~ ) i n  

~ s ,  S>O, and so we w r i t e  the CaThy problem f o r  the equa t i on  ( I . I )  in 

the  f o l l o w i n g  i n t e g r a l  form 

t 
( I . 2 )  ~ ( t )  = S ( t )  0 o - i  I S ( t - T ) J ( O ( ~ ) )  d r ,  

o 

where OoC ~ s ,  s~2, and J~ = k(Of6~)6@.The f u n c t i o n  w ( t , x )  = S(~)~ o 

ve r .v f ies  the  K le in -Gordon  equa t i on  (wave equa t i on  i f  m=O) w i t h  

~ t  [ S ( t ) ~ o ] t = O  : -a.V@ o -imB~ o. 

We r e c a l l  t h a t  a s o l u t i o n  ~¢C(~; H I )  o f  ( I . I ) .  s a t i s f i e s  the conserva -  

t i o n  laws 

(1.3) 

(I  .4) 

!@( t ) [  2 : !~o! 2, t £m. 

Im I~*(t)a.v~(t)dx + m I ~*(t)~(t)d× + 
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+ _k r ( _ ~ # ( t ) ~ ( . t ) )  2 dx = (energy ) ,  t c l R ,  
2 ~ " 

where I = ~ The enerqy w i l l  not be usefu l  in our es t ima tes .  A loca l  
I J]R 3" " 

ex is tence  and uniqueness theorem fo r  the Cauchy problem fo r  equat ion 

( l . l )  is easy to prove i f  ~o~]H2. In [ 7 ] ,  M. Reed has obta ined a g lo -  

bal ex i s tence  r e s u l t  f o r  equat ion ( l . l )  w i th  h igher  n o n l i n e a r i t y ,  i f  

m>O, ~o ~ ]H 3 and !!@ o l! = l~ol]H 3 + sup [ ( l  + I t l )  312 I S ( t ) ~ o l ~ ]  is small 
t~]R 

enough (c f .  [ 7 ] ,  theorem 2 .2 ) .  The cubic case ( i f  m>O) can a lso be i n -  

( c f .  [ 3 ] ) .  Fur thermore,  i f  m>O and ~o~]H2+S, cluded in his r e s u l t  

O<s<l, we can modi fy  the work of  M. Reed in o rder  to ob ta in  an ex i s ten  

ce r e s u l t  of the same k ind ,  w i th  rep laced by (I + ~ s ) ( l  ~) ,  ~ 0  

1 S)(I  - c ) 2 > l ( c f .  [ 3 ] ! _ I n  §3 of t h i s  paper we extend such tha t  (I + ~ 

~oC~ 2, r ep lac ing  the II = norm by an IW I ' p  norm, t h i s  r e s u l t  to 

3<p< I0 and app ly ina  the es t imates  of  Ph Brenner f o r  the l i n e a r  Klein- 

-Gordon equat ion ( c f .  [ 2 ] ) .  In §2 we study the nu l l  mass case (m=0). 
3 In t h i s  case we need ~o c ~ bu t ,  as J. G in ib re  and G. Velo po in ted out  

to us, t h i s  c o n d i t i o n  can be weakned in the framework of  Besov spaces. 

Then, r ep l ac i na  the IL ~ . norm by an IW I ' p  norm, 4<p<+~o, and app ly ing  

the es t imates  of  H. Pecher fo r  the l i n e a r  wave equat ion ( c f .  [5] and 

[6~) we ob ta in  a g lobal  ex i s tence  r e s u l t  f o r  the Cauchy problem i f  

!!~ I1~ : ! % 1 3  + sup 
' t ~  

2 
[ ( 1  + I l l )  1 - ~  ls(t)%liwl,p] 

i s  small enough ( c f . [ 4 ] ) .  

2. The nu l l  mass case (m = 0) .  

c 3 - s , p '  3 + Assume m=0, ~ ]H . Let H ( IR ) ,  sc IR, 4<p<+~, I_ l-L, = I ,  be the 

, feD( ]R ). I f  complet !on of D( ~R 3) w i th  respec t  to I F - I ( I ~ I  s f ( ~ ) I i , P  3 
~ e ~ s , p  = ( ~ s , p ' (  N3) )4  wi th  s = 2 ,  4--, we have ( c f .  [5 and [6] : 

P 
2 - I + -  

< c I t ]  P ( I# !~S , + Im.vq~!~s_ , ) ,  t # 0 .  ! S ( t ) # I p  - ,p = l , p  

Since we have ( c f .  [ I ] )  W 2 p ' -  H2 'D '~  H s'p'C-~ ~s ,p '  Hs,P ' - , where is the 
comple t ion  of P(m 3) wi th  respec t  to IF - I  [ ( I + I ~ 1 2 )  s/2 f ( ~ ) ] I p , ,  we 

ob ta in  
2 

(2 .1 )  I S ( t ) ~ ! ~  I ' p  -< c l t l - l + ~  !~ ! Iw3 'P ' '  i f  ~ N 3 'p  , t¢O. 

Fur thermore,  s ince IS t )~ !  < clS(t)q~I 3 = clq~[ we have 
: IW 1 ' P  - N N 3' 

(2 .2 )  ! S ( t ) ~ I j l , p  _< c I~IN3, teaR. 
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Hence, by (2 .1)  

(2 .3 )  ! S ( t ) ~ [  1 

i f  ~ ~ 3 ~ 3 ' P '  

We need the f o l l o w i n g  res 

and ( 2 . 2 ) ,  we ob ta in  

2 
< ¢ ( l + l t [ ) - l + P ( l ¢ [  3 ~p - 

and t ~ ~ .  
u l t :  

Lemma 

(2 .4 )  

w i th  

+ t¢ l lw3 ,P , ) ,  

2 .1 :  Assume ~ I ' # 2  e ]]13' J~ = k(~+6~)6~" We have 

IJ~l  J~21 3 <__ c y ( ~ I ' ~ 2 ) '  i f  4<p<+~, 

2 + I~ 2 2 
y(~l,~2) = [(I~iIiwl, p l]wl,P)!~l'~2[~13 + 

+ (1~1 iIH3+I~2[~3)( Iml !iW 1 ,p+]~2 [IWI ,p)I~l-m2 I~l ,p]" 

(2.5) IJ~l J@21~/3,p'-< 

(2.6) I J ~ l - J ~ 2 1 1 3 ,  p, <__ 

cY(~ l ,~2  ) i f  4<p56. 

<_! c[(  !m] !l  ] ,p + Im211v 1 ,p)( l~l I~l ,r+l~zliw] , r ) te l  -~211H3 + 

+ ( l~ l  1~3 + [~2!m3)( 1#1 I~1 , r  +1~21~1 , r  ) 1~l-~21ml ,p ] '  

1 1 2 i f  6<p<+~, with ~ = ~-~. 
Proof :  Let us take the " s i m p l i f i e d  model" Ju = u 3, u~H3(~3)  real  and 
l e t  us es t imate  D3(u 3 -  v3 ) ,  where D 3 is  a t h i r d  d e r i v a t i v e .  Let m = u-v. 

D3(u 3 -  , ,  = , = D 2 The terms Of v 3) are of the type @ l D 3~ u v @ 2 m D u v,  
03 = Dm D 2u v,  04 = DmDu Dv , 05 = m D3u v , @ 6 = m D2u Dv . 
Let 4<p<+=. We have, by Ho lder ' s  i n e o u a l i t y  and Sobolev 's  imbedding 
theorem: 

l e l 1 2 1  ID3mJ2 !u[i= rv!~ i c y l ( m , u , v ) ,  

le212_<[D2~t s [DU[p rv[~_<c y l ( ~ , u , v ) ,  

w i t h  ~ l ( m , u , v ) =  [m{ 31U!w IV[w 1 and 1 1 1 ' 'H l , p  ,p -s = 2 -  p '  

le312 < - D~]p ]D2UIs fv[~_<c ¥ 1 ( u , w , v ) ,  

!e4! 2 ! IDC~!p [Du 

!0512 < !col~o[ D3u 

< c Yt (u  w,v)  !r IDvlp_ , , 

!2 lvl=<_ c Y l ( U , , , v ) ,  
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!~)612 <_ !mlo~ ID2Uls IDV!p <__ c Y l (U ,m ,v ) ,  

1 1 1 1 1 2 With -~=~- -~  and ~ = ~ - ~ .  

Now, l e t  4<p<6, ~, +l__ = I .  We have - p 

Ol!p,_< ID3m! 2 lu!q IVlq_<CYl(C~;'U'V), 

021p, <__ !D2m12 IDUlp IVlr <_ c yl(m,u,v), 

031p, _< IDmJp ID2uI2 IV!r < c Yl(U,m,v), 

o4! p, < IDm!p 

e5!p, ! !~!r 

< !~Ir !e61p, _ 

1 1 1 , 1 1 
with ~ = 4 - T p  ~ = 2 -  

F i n a l l y ,  l e t  6<p<+~. 

81 !p, <_ !D3m12, 

02! D, <__ !D2m! 2 

< C Y l ( V , ~ , u ) ,  IDUlp IDvl h _ 

D 3 u 1 2  IVlp < C Yl(U,0J,V),  

< c , ( ( u , ~ , v ) ,  D2U!2 {DVlp- l 

2 and 1 = 1 3 
r 3 - 3" 

We have, 

Ulp Ivlr <_ c y2(c,J:U,V), 

DUjp JVl, r -< c ~2 (m,u , v ) ,  

103! p, 5_ !D~Ip 1D2uI2 }V!r < c y 2 ( ~ , u , v ) ,  

@4!'D, <__ IDc0!p !Dul 2 IDVlr < cY2 (u ,m ,v ) ,  

0 5 

le6 

with y2(~ 

Noti ce th 
Now, l e t  

( 2 . 7 )  I t *  I! = sup ! ~ ( t ) l  3 + sup [(1 + ! t l )  
t~ IR t~ IR 

Let Z = {@c-IH 3 !If@ !!z < +co}, where 

I < Wlp ID3uI2 IVlr  < c Y 2 ( u , ~ , v ) ,  , p l  - -  

Ip, < Im!p !D2u12 IDVlr < c Y2 (U ,~ ,v ) ,  

,u ,v)  = !mIH 3 lUlw I ,  ,P IV lw l , r :  and I - = ! - - 2  . r  2 p 

a t ,  i f  6<p<+~, we have 6>r>2 and (I - -~ )+  ( I - ~ )  = 1 +-2p > I .  [ ]  
4<p<+oo,~¢C(~ ; IH3). We put 

1 _ _  2 
P I ~ ( t ) l ~ l  ,p] 
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1_2 
(.2.8) I I~l lz = I1 s ( t ) ¢ I I :  l@I 3+sup[(l+It{) P IS(t)@l l,p 

' ' t ¢ I R  ~ 

l By (2 .3 ) ,  i f  @~ IH3FI~V 3'p' , -~Ip +-~= l ,  we have @¢E and 

II ¢!lz <_ (!~I~3 + !@!3qS,p)" 
We can now prove the fol lowing theorem (cf. [4]) :  

~3 Theorem 2.1: Assume ~o c and suppose that, for pc]4,+~o[ ,If ~oIlz is 
small enough. Then, there exists an unique solut ion %' of the equation 
( l . l )  (m=0) ver~!fying ~(0)=~o and such that ~cC( I~; IH3)NCI(IR; ~2). 

Furthermore,  lJ ~II <+~- 

Proof:  Let n>0 and ~o ~ E such tha t  

x(n ,~o)={~ec(m;  IH 3) 

~I! E _  < q • We put 

II ~-s(t)~oIli_< n},  

which is a complete metric space for the distance Ftd(~l'~2) = II ~I-~2H- 
We have I! @!! <2n for ~X(q,~o) .  Define ( T ~ ) ( t ) = - i l  S(t-T)J(~(T))dm 
(M@)(t) = S ( t )~  ° + ( T ~ ) ( t ) ,  fo r  ~cX(t l ,~o) , wi th  o j@ = k (~+B~)~ .  
We assume tha t  4<p<_6, s ince the proof  in the case 6<p<+ o~ fo l l ows  by an 
easy adapta t ion  ( c f .  lemma 2 .1) .  By reasons of symmetry we take t>0. 
We have, by (2 .4)  and s ince 2 --4 > I ,  

P 

I ( T ~ ) ( t ) ! l  3 <_ !J(,(T))IIH3 dT <_ 

-2+4 
< c 2 ( 2 ~ ) 3 ! t ( l + I T l )  g dT<c3 n3 

- -  Jo ' - -  

Now, by (2 .3 ) ,  (2 .4)  and ( 2 . 5 ) ,  we deduce 

t 
< F IS( t -T )  J ( ~ ( T ) ) ]  1 dT < I (T@)( t ) !  1 D -  ,p -- 

~,I '~ Jo 

I i  -1+--~ <_c (l+!t-T!) P (!J(~(T)) I]H3 + IJ(~(T))I 3,p,)dT 

!~ )-I + 2 11H3 < c 4 ( l + I t ' T l  Pr~(T) I1~(T)I 2 dT < . . . . .  ~,ll, P -- 

<-- c4(2n)3 Io ) ' I + -2  -2+4- ( l+! t -T!  p (I + I~I) p dT <_ 

2 
<__ c 5 n 3 ( l + I t l )  - l  +P , by the lemma in page 78 of [7]. Hence, 

IIT~[I < c 6 n 3 i f  ~¢X(n,~o) and so I! Mm-S(t)mo[l < c 6 n 3 Let us take 
- -  2 no>0 such that c6n < I .  Hence, for n<_n o , we have proved that 

O ~  
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M:X(q,~o ) ÷ X(q ,~o) .  By a s i m i l a r  argument we can prove t ha t ,  i f  ~ l '  

@2cX(n,~o) w i th  n~no, we have 

Hence 

n 21! ~I -@ II ( M ~ l ) ( t ) -  (M~2 ) ( t ) l ~3 -<c8  2 ' 

! ( M ~ l ) ( t )  - (M~2)( t ) I IwI ,P_< c 9 n211 ~I-~2 l I  ( l + I t l )  

~21! ~ -~2! i. Bv choosino nl_<n o II M~I- M~2 !! < clO 1 . . . .  

- i +  2 
p .  

such that clO n~<l, 
we can apply Banach's f i xed  po in t  theorem and th i s  completes the prooC 

N 
3. The massive case (m>O). 

~]_~ ½ 7) 1 3 5< . Assume m>O, @~IH2, 3<p (hence, 3 (  1 > ~ and ~ -  ~ _ 0 )  We have 

( c f .  i+   s,p , w i th  

Is(t)~l <c p -  
1 t!-3(½- 7) ( @IiH s, p, + I~.V~IIH s-1 , p,) ,  for I t l > l .  

Hence, s ince W 1 'p 

< C Is(t)~! D_ 

i f  ~c IW 1 ' p ' ,  and so 

(3 .1 )  I s ( t )~ l  l,p<__c 

= H I ,p 'C.  H s , p ' ,  we have 

t l  I~11 ,p, ,  l t l  Z l ,  

1 
- 3 ( - - ~ )  , ItI>__ l !tl I@1 2, 0 , , IW 

i f  @{ ~2,p'  

Furthermore, since IS(t)@llwl,P<__c!S(t)~ilH2 
(3 .2)  I s ( t ) , I  l ,D<cl , !_ N2, t e N .  

Hence, by (3 .1 )  and ( 3 . 2 ) ,  we obta in  

:clot 2' we have 

(3 .3 )  !S(t)#! iwl ,P<__c(l  + ! t ! )  (Idpl]H2+ I~IIW2, p 

i f  qbclH2~IW2'P'and tc ]R .  
We need the f o l l o w i n g  r e s u l t :  

Lemma 3.1: Assume ~ l ,~2c ]H 2, Jd/= k(#+~)Bd/ .  We have 

, ) ,  

(3 .4 )  max( iJ#l  - J~2!IH 2, IJ~ 1 - J~21 2 ,p , )  < 
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<_ c[(!~l !2!,p + !~p2 ]2 ~l,p )I~ l - ¢21m2 + 

+ (!41 !m2 + T¢2lm2) (Tel %1 ,p + [e2l~l ,p)I~I - 921~ I ,p  ] "  

Proof :  Let  us take again the " s i m p l i f i e d  model" Ju = u 3, u c H3(R 3) real  
and l e t  us es t ima te  D2(u 3 .  v 3) where D 2 is a second d e r i v a t i v e .  Let 
m=u- v. The terms o f  D2(u 3 -  v 3) are of  the type e I = D2m u v, e 2 = DmDuv, 
e 3 = mD 2 u v. Let  3<p~]~O. We have, by H o l d e r ' s  i n e q u a l i t y  and Sobo lev 's  
imbedding theorem: 

!e l l  2 ~ !D2m! 2 !u l~  Ivl~ ~c ¥3(m,U,V) ,  

le2! 2 ! ID~ls IDUlp [v ]~  ~ c y 3 ( ~ , u , v ) ,  

!e3! 2 ~ [ml~ IDZul2 lv /~  ~ c Y 3 ( u , ~ , v ) ,  

w i t h ' Y 3 ( m , u , v )  = . I ~ ! I U T H  2 ' W 1 'P lV[ ' l 'Pw and !s : !2 - !p. 

Fur the rmore ,  we have, w i t h  ! + l =  ] ,  
p' P 

, < ID2~[ Tu! Iv I < c y 3 [ ~ , u , v ) ,  le l  p - ' .2 q q - 

, D~Tp < c ~3(v ,co ,u) ,  le 2 P _< I [DUlp IVlrl 

le 2 P' < lm! 1D2u!2 IVpq < c % ( u , ~  v) 

w i t h  ! = ] - -  1-- and -]--=1 - _3_ 
q 4 2p r I p" 

Now, l e t  3 < p < ~ ,  ~OeC(IR; ]}42). We put 

( 3 .8 )  I[!@!II = telmSup !# ( t ) ! IH2+  t¢IRsup [ ( l + ! t l )  3( --p) I ~ ( t ) I  l~l ' p] 

Let  ~.= {¢c]H2[  I16[ ! }<+oo} ,  where 

(3 .9 )  I] ¢l% = ll ls(t)¢ll l = I¢1• 2+suptcm[(l+ltl)3(½- ~) Is(t)¢llw I ' P] 

By (3 .3 )  i f  ¢c]H2C~M 2 ,p '  1 + ] - =  1, we have ¢e~ and 
, D, p 

II ¢lI~ <__ c(I¢l ]H 2 + l¢llW 2 ,p ) "  

The next r e s u l t  has a p roo f  s i m i l a r  to t ha t  of  theorem 2 .1 ,  based on 
lemma 3.1 :  
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Theorem 3.1: Assume ~o~2  and suppose that, for pc]3,]~], ]] ~o][ ~ is 
small enough. Then, there exists an unique solution ~ of the equation 
( l . l )  (m>O) verifying ~ (0) =~ and such that ~cC(IR;IH 2) NcI(~;IH l ). 

o 
Furthermore, III III < 
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I .  INTRODUCTION 

The purpose of this lecture is to summarize some recent perturbative 

results on the Cauchy problem for the non linear Klein-Gordon equation 

IZlq) - ~p" - A(p = -f((p). ( 1 . l )  

Here ~ is a complex valued function defined in space time ~n+l the 

upper dot denotes the time derivative, A is the Laplace operator in 

~n and f is a non linear complex valued function. Only the case n ~ 2 

will be considered since the special case n = 1 is simpler and would 

require slightly modified statements. 

The existence and the properties of the solutions ~ depend in 

crucial way on the initial data and on the non linear term f. The 

situation can be best illustrated by considering the following typical 

form of f 

f ( ~ )  = Xo~ + xm I~1 p-1  (1.2) 

with XO, X E~ and 1 < p < ~ . In this case, if one restricts conveniently 

the space where to operate and therefore the space of initial data, the 

Cauchy problem for the equation (1.1) has a unique local (in time) 

solution. The extension of a local solution to a global one requires, 

in general, additional assumptions since, as it appears already in ele- 

mentary examples, local solutions may fail to exist beyond a finite 

time. The standard procedure to prevent this kind of phenomenon makes 

*Laboratoire associ6 au Centre National de la Recherche Scientifique. 
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use ,  i n  an e s s e n t L a L  way,  o f  t he  c o n s e r v a t i o n  o f  t he  e n e r g y  and o f  some o f  

i t s  p o s i t i v i t y  p r o p e r t i e s .  For t h i s  r e a s o n ,  Wh i l e  t h e r e  i s  a l a r g e  

f l e x i b i L L t y  i n  t he  c h o i c e  o f  t he  space where t o  s o l v e  the  l o c a l  Cauehy 

p r o b l e m ,  t he  a v a i l a b l e  p r o o f s  o f  e x i s t e n c e  o f  s o l u t i o n s  f o r  t h e  g l o b a l  

Cauohy p r o b l e m  a l w a y s  r e q u e s t  t h e  i n i t i a l  d a t a  t o  b e l o n g  t o  t he  e n e r g y  

( H 2 ( A  n) N L P + l ( ~ n ) )  ~ L 2 ( ~ n ) .  These s o l u t i o n s  w i l l  be space X e 

c a l l e d  f i n i t e  e n e r g y  s o l u t i o n s .  The p o s i t i v i t y  p r o p e r t y  o f  t h e  e n e r g y  

depends  c r u c i a l l y  on the  s i g n  o f  X : i f  X < 0~ f i n i t e  e n e r g y  s o l u t i o n s ,  

known t o  e x i s t  f o r  s h o r t  t i m e ,  can b low  up;  i f  X ~ 0, any e l e m e n t  o f  X 
e 

can be t a k e n  as t h e  i n i t i a l  c o n d i t i o n  o f  a g l o b a l  s o l u t i o n  i n  X 
e 

E x i s t e n c e  o f  g l o b a l  s o l u t l o n s  o f  t he  Cauehy p r o b l e m  i n  X e f o r  X ~ 0 

can be o b t a i n e d  by a c o m p a c t n e s s  t e c h n i q u e ,  wh ich  i s  i n h e r e n t l y  non 

p e r t u r b a t i v e  i n  c h a r a c t e r .  I n s t e a d ,  a l l  p r o o f s  o f  u n i q u e n e s s  r e q u i r e  

a p e r t u r b a t i v e  a rgumen t  wh ich  can be i m p l e m e n t e d  i n  X under  t h e  as -  
e 

s u m p t i o n  

p - 1 < 4 / ( n  - 2) (1 .3 )  

The c o n d i t i o n  ( 1 . 3 )  can be r e l a x e d  a t  t h e  p r i c e  o f  p r o v i n g  u n i q u e n e s s  

i n  a space s m a l l e r  t han  Xe, i n  wh ich  ease ,  h o w e v e r ,  t h e  spaces  o f  

e x i s t e n c e  and u n i q u e n e s s  do no t  match any more.  

Here a p r e s e n t a t i o n  i s  g i v e n  t o  t he  e h a i o  o f  p e r t u r b a t i v e  a r g u m e n t s  

wh ich  l e a d s  t o  t h e  e x i s t e n c e  and u n i q u e n e s s  i n  X o f  g l o b a l  s o l u t i o n s  
e 

of  t he  Cauchy p r o b l e m  f o r  t h e  e q u a t i o n  ( 1 . 1 )  unde r  t h e  a s s u m p t i o n  ( 1 . 3 )  

i n  t he  s i t u a t i o n  where the  e n e r g y  i s  s u i t a b l y  bounded f rom be low  (X ~ 0 

f o r  t he  examp le  ( 1 . 2 ) )  and f o r  any n ~ 2. P r o o f s  o f  t h e  s t a t e m e n t s ,  

d e t a i l s  and r e f e r e n c e s  t o  p r e v i o u s  work a re  g i v e n  i n  [ 3 ]  . A d d i t i o n a l  

u s e f u l  i n f o r m a t i o n  can be found  i n  [ 2 ]  

We now p r o v i d e  t h e  maLn n o t a t i o n  We d e n o t e  by II llr t h e  norm Ln 

L r = L r ( ~ n ) .  Wi th  each r i t  i s  c o n v e n i e n t  t o  a s s o c i a t e  t h e  v a r i a b l e s  

y ( r )  and 5 ( r )  d e f i n e d  by 

y ( r ) l ( n  - i )  = ~ ( r ) / n  = i / 2  - l l r  . 

For each i n t e g e r  k we d e n o t e  by H k E H k ( ~  n) t he  u s u a l  S o b o l e v  s p a c e s .  

We s h a l l  use t h e  homogeneous Besov spaces  o f  a r b i t r a r y  o r d e r  and t h e  

a s s o c i a t e d  S o b o l e v  i n e q u a l i t i e s ,  f o r  wh ich  we r e f e r  t o  t he  A p p e n d i x  

b o t h  f o r  i n f o r m a t i o n  and r e f e r e n c e s .  We use the  n o t a t i o n  BP r E Br2(  "p  ~ n )  

f o r  t h o s e  s p a c e s .  For any i n t e r v a l  I ,  f o r  any Banach space B, we d e n o t e  

by ~ ( I ,  B) t he  space o f  s t r o n g l y  e o n t i n u o u s  f u n e t i o n s  f rom I t o  B. 

For any q,  1 < q < ~, we d e n o t e  by L q ( I  B) ( r e s p .  L q ( I ,  B ) ) ,  
= = ' loc 
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t h e  s p a c e  o f  m e a s u r a b l e  f u n c t i o n s  ~ f r o m  I t o  B such t h a t  II m ( . ) ;  BII 
E L q ( 1 )  ( r e s p .  II ~ ( ' ) ;  BII E L~o c ( I ) ) .  

We s h a l l  need t h e  o p e r a t o r s  K ( t )  = ( - A ) - l / 2 s i n ( - A ) I / 2 t  and 

K ( t )  = c o s ( - ~ ) l / 2 t ;  b o t h  a r e  bounded  and s t r o n g l y  c o n t i n u o u s  w i t h  

r e s p e c t  t o  t i n  H k f o r  any  k .  

2. THE LOCAL CAUCHY PROBLEM 

The s t u d y  o f  t h e  Cauehy  p r o b ! e m  f o r  t h e  e q u a t i o n  ( 1 . 1 )  can be 

c o n v e n i e n t l y  r e p l a c e d  by t h e  s t u d y  o f  t h e  i n t e g r a l  e q u a t i o n  

= A(t0 ' (0) ~) (2.1 

where t0E~ , ~0) is a solution of the free wave equation 

D (0) = 0 (2.2 

and 

A(to ' ~(0); ~) ~ ~(0) + F(to ; ~) 

wi th  

t z- 
( F ( t o ;  ~ ) ) ( t )  ~ - J .  dT K ( t  - ~) f ( ~ ( T ) )  ( 2 . 3  

to 
At  a f o r m a l  l e v e l  any  s o l u t i o n  o f  t h e  e q u a t i o n  ( 2 . 1 )  i s  a s o l u t i o n  o f  

t h e  e q u a t i o n  ( 1 . 1 )  and ,  c o n v e r s e l y ,  any  s o l u t i o n  o f  ( 1 . 1 )  s o l v e s  ( 2 . 1 )  

w i t h  a s u i t a b l e  ~ ( 0 )  ( s o l u t i o n  o f ( 2 . 2 ) )  w h i c h  c o n t a i n s  t h e  i n f o r m a t i o n  

on t h e  i n i t i a l  d a t a  a t  t i m e  t O . The i n t e g r a l  ( 2 . 3 )  and t h e  s u b s e q u e n t  

ones  may be u n d e r s t o o d  i n  v a r i o u s  s e n s e s .  G e n e r a l l y  s p e a k i n g ,  when t h e  

f u n c t i o n s  i n v o l v e d  a r e  s u f f i c i e n t l y  r e g u l a r ,  t h e y  a r e  o r d i n a r y  i n t e g r a l s  

and t h e  e s t i m a t e s  t h e y  s a t i s f y  d e t e r m i n e  t h e i r  e x t e n s i o n  t o  a l a r g e r  

c l a s s  o f  f u n c t i o n s .  T h e i r  m e a n i n g  s h o u l d  be u n d e r s t o o d  f r o m  t h e  c o n t e x t  

and w i l l  n o t  be m e n t i o n e d  e x p l i c i t e l y .  

I n  o r d e r  t o  p r o v e  u n i q u e n e s s  o f  t h e  s o l u t i o n s  o f  t h e  e q u a t i o n  

( 2 . 1 ) ~ w e  b u i l d  a s p a c e  based  on two  norms chosen  i n  such a way t h a t  

F ( t o , .  ) , r e s t r i c t e d  t o  t h e  bounded  s e t s  o f  t h e  f i r s t  one ,  i s  c o n t r a c t ~  

i n g  w i t h  r e s p e c t  t o  t h e  s e c o n d  o n e .  Those norms i n v o l v e  space  t i m e  

i n t e g r a t i o n s  and a r e  s u g g e s t e d  by t h e  f o l l o w i n g  f u n d a m e n t a l  e s t i m a t e  

f o r  K ( t )  [ 8 ] [ 6 ] [ 4 ]  
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l - ~ ( r )  6 ( s )  ILK(t)Ullr ~CLt I + HUlLs (2 .4 )  

w h i c h  h o l d s  f o r  

0 5 6 ( r )  - 6 ( s )  ~ M i n { 1  + y ( r ) ,  n ( l  - x ( r ) ) }  

1 < s ,  r < ~ i f  n = 2 . 

T h i s  m o t i v a t e s  t h e  f o l l o w i n g  d e f i n i t i o n s .  F o r  a n y  i n t e r v a l  I and  s u i t a b l e  

v a l u e s  o f  Z , q ,  r and q l '  we d e f i n e  t h e  s p a c e s  

~ C o ( I )  = t q ( l ,  ~ ) , ~ C l ( I )  = L q I ( I ,  L r )  

and  s i m i l a r l y  t h e  l o c a l  o n e s  i n  t i m e .  

The b a s i c  a s s u m p t i o n  on f i s  e x p r e s s e d  by  a p o w e r  l a w  e s t i m a t e  

o f  t h e  f o l l o w i n g  t y p e  

(AI)  f ~ ~ i (  C , ~ ) ,  f ( O )  = 0 and f o r  some p,  i ~ p < ~ and a l l  z ~ 

t f ' ( z ) l  E M a x { l ~ f / 3 z  I , I ~ f / ~ z l }  ~ C(1  + I z l  p - l )  . ( 2 . 5 )  

The f i r s t  i m p o r t a n t  p r o p e r t y  . o f  F ( t o , . )  w i t h  r e s p e c t  t o  t h e  

p r e v i o u s l y  d e f i n e d  s p a c e s  i s  c o n t a i n e d  i n  t h e  n e x t  l e m m a .  

Lemma 2 . 1 .  L e t  f s a t i s f y  ( A t ) ,  l e t  I be a b o u n d e d  i n t e r v a l  o f  t i m e ,  

l e t  t o e I and  l e t  ~ i '  ~2  ~ ~ C I ( 1 ) N ~ C o ( 1 ) "  Then 

l l F ( t  O, ~ 1 )  - F ( t  O, ~ 2 ) ; ~ C l ( I ) I I  s c II~i - ~ 2 ; ~ ) C I ( 1 ) I I  

× { I z l  2 + III ~l (s 
i=i,2 

provided £, r, q, ql satisfy 

, i < Z, r, q, ql < 

i < r < ~ i f  n = 2 ; 

(p  - l ) n / Z  < M in  { i  + 7 ( r ) ,  

(p  - l ) / q  + I / q l  < 1 

q l  ~ 2 - (p  - I )  ( n / ~  + l / q )  > O. 

II% IJCo(T)liP-l)} 

t~(r)l ~ i i f  n ~ 3 

n ( 1  - y ( r ) ) }  

(2.6 

( 2 . 7  

( 2 . 8  

( 2 . 9  

( 2 . i o )  
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The p r o o f  i s  a consequence  o f  ( 2 . 4 )  and o f  H S l d e r ' s  ~nd Young ' s  i n e -  

q u a l i t i e s .  

Lemma 2 .1  i m p l i e s  i m m e d i a t e l y  the  f o l l o w i n g  u n i q u e n e s s  r e s u l t .  

P r o p o s i t i o n  2 . 1 .  Le t  f s a t i s f y  ( A I ) ,  l e t  C, r ,  q,  q l  s a t i s f y  ( 2 . 7 ) -  

( 2 . 1 0 ) ,  l e t  I be an open i n t e r v a l ,  l e t  t o ~ I and l e t  ( 0 ) ~  ~ C l l o c ( i  ) N 

~ C O l o e ( 1 ) .  Then t he  e q u a t i o n  ( 2 . 1 )  has a t  most one s o l u t i o n  i n  ~ l l o e ( I ) N  

3C01oc ( I ) "  

By choosing su i tab le  values of C, r ,  q, q l '  the condi t ions (2 .7) -  

(2.10) can be s a t i s f i e d  fo r  any p; in p a r t i c u l a r  large values of p 

requi re large values of ~ and q. In th i s  case, in general,  f i n i t e  

so lu t ions do not belong to ~ O l o c ( ~ )  so that  the previous e n e r g y  

p r o p o s i t i o n  does no t  a p p l y  to  t h i s  i m p o r t a n t  c l a s s  o f  s o l u t i o n s ,  u n l e s s  

an upper  bound on p i s  imposed ( t h i s  bound i s  e x p r e s s e d  by ( 1 . 3 ) ) .  

For t he  e x i s t e n e e  o f  l o c a l  s o l u t i o n s  i t  i s  s u f f i c i e n t  t o  show t h a t  

b a l l s  o f  a r b i t r a r y  r a d i u s  R i n  ~ O ( I )  a re  l e f t  i n v a r i a n t  by F ( t o , . )  

f o r  some I d e p e n d i n g  on R, o r ,  more g e n e r a l l y ,  t h a t  t h i s  happens f o r  

t he  b a l l s  o f  an a p p r o p r i a t e  space ~ C 2 ( I )  c o n t i n u o u s l y  embedded in  ~ C 0 ( 1 ) .  

I t  t u r n s  ou t  t h a t  a c o n v e n i e n t  c h o i c e  f o r  t h i s  new space i s  

~C2(I) = Lq ( I '  BP)r 

f o r  s u i t a b l e  v a l u e s  o f  p,  r and q. The S o b o l e v  i n e q u a l i t i e s  (see the  

A p p e n d i x )  i m p l y  t h a t  ~ C 2 ( I )  i s  c o n t i n u o u s l y  embedded i n  ~)CO(1) p r o v i d e d  

n / r  - p= n/& , £ ~ 2 and & ~ r .  In  o r d e r  to  show t h a t  F ( t o , - )  r e p r o d u c e s  

t he  space ~]C 2 ( I )  , t he  f o l l o w i n g  g e n e r a l i z a t i o n  o f  ( 2 . 4 )  p l a y s  an 

i m p o r t a n t  r o l e  : 

I IK( t )u ;  ~ 1 t  = < c l t l : ~ l t u ;  ~P r II ( 2 . i l )  

which holds for  a l l  r with 0 =< X(r =< i and a l l  p, p ' ,  r ' ,  p such that  

0 ~ 1 + p= p + G ( r )  p '  8 ( r ' )  ~ ½ ( Y ( r )  - y ( r ' ) ) ( 1  + 1 / y ( r ) )  S 1 + y ( r ) .  

Lemma 2 . 2 .  Le t  f s a t i s f y  ( A I ) ,  l e t  I be a bounded i n t e r v a l  o f  t i m e ,  l e t  

I and l e t  ~E~C2(1 ) .  Then t O 

IIF(to,~)~JC2(I)II ~ C {LIl211m ;ZE2(I)II  + I I l  n2 IIm ; ~C2 (1 ) I IP  } ( 2 . 1 2 )  

p r o v i d e d  p ,  r a n d  q s a t i s f y  0 ~ p < 1 a n d  
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0 S y ( r )  ~ (n - l ) / ( n  + i )  ( 2 . 1 3 )  

0 ~ (p - l ) ( n / r  - p )  ~ 1 + y ( r )  (2.14) 

p ~ q ( 2 . 1 5 )  

q2 E 2 - ( p  - l ) ( n / r  - P + l / q )  > O. (2.16) 

The proof i s  s i m i l a r  to t ha t  of Lemma 2.1 where (2.4 i s  replaced by 

(2 .11) .  The only new i n g r e d i e n t  i s  the Leibni tz  ru le  adapted to f r a c t i o n -  

al d e r i v a t i v e s  (See Lemma A1). 

We can now s t a t e  the basic  loca l  ex i s t ence  and uniqueness 

r e s u l t  for  the s o l u t i o n s  of the equation (2 .1 ) .  We s h a l l  denote by 

R) the closed ba l l  of radius  R in ~ 2 ( I ) .  B 2 ( I ,  

Proposition 2.2. Let f satisfy (A1), let p, r, q and ql satisfy 0 ~ p<l, 

1 ~ q ~ ql $ ~ and (2.13)-(2.16). Then for any R > O, there exists 

T(R) > 0 such that, for any t O ~ ~ and for any ~0) e B2(I, R)~Cl(I), 

where I = [t O T(R), t O + T(R)] , the equation (2.1) has a solution in 

B2(I , 2R)N ~Cl(I) with II~; ]Cl(I)ll Q 2 II~O);oCI(I)II . That solution is 

unique in OC2(I)n ]el(I). 

If n ~ 4, the assumptions of Proposition 2.2 impose on p the 

upper limit 

( p  - l ) ( n / 2  - 3 / 2  - l / n )  < 2 

which i s  obtained by taking p ~ i ,  y ( r )  = ( n - l ) / ( n + l )  and q = ql = ~. 

This condi t ion  i s  not s u f f i c i e n t  to ensure tha t  f i n i t e  energy s o l u t i o n s  

belong to ~C2(~) s ince  p, r and q are too l a rge .  A more s t r i n g e n t  upper 

l i m i t  on p (given by (1.3))  i s  necessary in order to allow values of 

which permit to accomodate f i n i t e  energy s o l u t i o n s  in ~C2(~) .  p, r ,  q 

We now d iscuss  the behaviour of the f i n i t e  energy s o l u t i o n s .  

We r e c a l l  tha t  the energy space X has been already def ined in the 
e 

I n t r o d u c t i o n .  I f  p s a t i s f i e s  (1 .3 ) ,  the Sobolev i n e q u a l i t i e s  imply tha t  

Xe = { ( ~ 0 '  ~0 ) : ~0 E H I '  $0 ~ L2)  = H 1 0 k 2 ( 2 . 1 7 )  

This is the expression to which from now on we will refer for X e since 

in all what follows (1.3) will be always supposed to hold. 
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Wi th  any (~0 '  40) ~ Xe we can c o n s t r u c t  t he  f i n i t e  e n e r g y  s o l u t i o n  

~ ( O ) ( t )  = K ( t  - t o ) ~  0 + K ( t  - t o ) ~  0 ( 2 . 1 8 )  

o f  t he  e q u a t i o n  ( 2 . 2 ) .  Th i s  s o l u t i o n  b e l o n g s  to  ~ ( ~ ,  H 1) and i t s  

s p a c e - t i m e  i n t e g r a b i l i t Y  p r o p e r t i e s  a re  e x p r e s s e d  by the  f o l l o w i n g  

1emma [ 7 ] [ 9 ] [ 5 ] [ 2 ]  

Lemma 2 .3  Le t  p, r ,  q s a t i s f y  

0 ~ 6 ( r )  ~ n /2  

-1 ~ ~ = p + 5 ( r )  - 1 < 1 /2  ( 2 . 1 9 )  

~ ~ ( r ) / 2  

1/q = Max(O,~) (2 .20)  

Then, f o r  any (~0 '  40) ~ Xe'  ( 0 ) ,  as d e f i n e d  by ( 2 . 1 8 ) ,  b e l o n g s  to  

~C 2 ( ~ )  and s a t i s f i e s  t he  e s t i m a t e  

II ~ (0 ) ;  ~C2(m)l l  ~ c(ii~,0112 + l lv~0il2 ) (2 .21)  

Th i s  l e a d s  to  t he  b a s i c  l o c a l  e x i s t e n c e  and u n i q u e n e s s  r e s u l t  

c o n c e r n i n g  f i n i t e  e n e r g y  s o l u t i o n s .  

P r o p o s i t i o n  2 .3  Le t  f s a t i s f y  ( A I )  and ( 1 . 3 ) .  Then 

(1)  There  e x i s t  p~ r and q s a t i s f y i n g  0 ~ p < 1, ( 2 . 1 3 ) - ( 2 . 1 6 )  and ( 2 . 1 9 )  

and ( 2 . 2 0 ) .  

Le t  ~C I and ~ 2  c o r r e s p o n d  to  t he  p r e v i o u s  v a l u e s  o f  p, r ,  q and to  

q l  ~ q" Then 

(2)  For any (~0 ~ 40 ) E X e t h e r e  e x i s t s  T > 0 d e p e n d i n g  o n l y  on 

II(%, ~0)~ ×ell such t h a t  f o r  any t o e ~ ,  t he  e q u a t i o n  ( 2 . 1 )  w i t h  ~ 0 )  

d e f i n e d  by ( 2 . 1 8 )  has a u n i q u e  s o l u t i o n  i n  OCI (1 )O ~f~2(1) where I = 

[ t  O T, t O + T] 

(3)  For  any (~ 'u  ~)u ~¢ X~e ~ f o r  any i n t e r v a l  1, f o r  any t O ~ I ,  t he  

e q u a t i o n  ( 2 . 1 )  w i t h  ~ , 0 ,  d e f i n e d  by ( 2 . 1 8 )  has a t  most one s o l u t i o n  i n  

~ 1 1 o e ( I ) ~  ~ 2 1 o c ( 1 ) .  
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3. The Global  Cauch¥ problem 

Once the l o c a l  Cauchy problem is  so lved ,  the next  n a t u r a l  

ques t ion  cons i s t s  in a s c e r t a i n i n g  whether the s o l u t i o n s  of the equa t ion  

(1 .1 )  ob ta ined  by the p rev ious  p e r t u r b a t i v e  techn ique can be extended 

to  a l l  t imes.  This c o n t i n u a t i o n  is  poss ib le  i f  we can f i n d  an a p r i o r i  

bound on the norms of  the l o c a l  s o l u t i o n s  and, f o r  t h i s  purpose, the 

energy is  a fundamental  q u a n t i t y ,  p rov ided  i t  s a t i s f i e s  an a p p r o p r i a t e  

p o s i t i v i t y  c o n d i t i o n .  The r e l e v a n t  assumption can be fo rmu la ted  in the 

f o l l o w i n g  way : 

(A2)  T h e r e  e x i s t s  a f u n c t i o n  V ~ ~ I (  C ,  ~ )  such t h a t  V(O) = O, V ( z )  

= V ( I z l )  f o r  a l l  z E C and f ( z )  = 8 V / S z .  Fo r  a l l  R > O, V s a t i s f i e s  

t h e  e s t i m a t e  

V(R) ~ -a  2 R 2 ( 3 . 1 )  

f o r  some a ~ O. 

by 

Fo r  ( ~ ,  ~)  ~ X e and such t h a t  V (~ )  ~ L 1 t h e  e n e r g y  i s  d e f i n e d  

, f m(m, ~p) = l l~ l l~+ l lvml l2  + dx V (q ) (x ) )  ( 3 . 2 )  

The f i r s t  p a r t  o f  ( A 2 ) ,  n a m e l y  t h e  r e l a t i o n  b e t w e e n  f and V, i m p l i e s ,  

a t  l e a s t  a t  t h e  f o r m a l  l e v e l ,  t h a t  

d E ( ~ ( t )  G ( t ) )  = 0 (3 3) 
d t  ' 

w h e r e  ~ i s  a s o l u t i o n  o f  t h e  e q u a t i o n  ( I . i ) ,  w h e r e a s  t h e  l o w e r  b o u n d e d -  

ness  c o n d i t i o n  ( 3 . 1 )  p r e v e n t s  t h a t  an i n f i n i t e  c o m p e o s a t i o n  b e t w e e n  t h e  

k i n e t i c  and p o t e n t i a l  p a r t s  o f  t h e  e n e r g y  t a k e s  p l a c e .  Those two f a c t s  

a l t o g e t h e r  y i e l d  a u n i f o r m  bound f o r  ~ i n  H 1 a t  f i n i t e  t i m e s  i n  t e r m s  

o f  t h e  i n i t i a l  d a t a .  The a c t u a l  p r o o f  o f  e n e r g y  c o n s e r v a t i o n  p r o c e e d s  

t h r o u g h  t h e  f o l l o w i n g  p a t h .  One f i r s t  i n t r o d u c e s  s u i t a b l e  o u t - o f f s  

b o t h  i n  t h e  e q u a t i o n  and i n  t h e  i n i t i a l  d a t a ,  t h e n  p r o v e s  a r e g u l a r i z e d  

f o r m  o f  t h e  c o n s e r v a t i o n  l a w ,  and f i n a l l y  d e d u c e s  ( 3 . 3 )  by r e m o v i n g  t h e  

e u t - o f f s .  The n e x t  p r o p o s i t i o n  s u m m a r i z e s  t h e  s i t u a t i o n  i n  e x a c t  t e r m s .  

P r o p o s i t i o n  3 . 1 .  L e t  f s a t i s f y  ( A I ) ,  ( 1 . 3 )  and ( A 2 ) .  L e t  ( ~ 0 '  40)  ~ X e  

l e t  I be an open i n t e r v a l  and l e t  t o  E I .  L e t  p, r and q s a t i s f y  O ~ p < I ,  

( 2 . 1 3 ) - ( 2 . 1 5 ) ,  ( 2 . 1 9 ) ~  ( 2 . 2 0 )  and l e t  q l  ~ q" L e t  ~(O)  be d e f i n e d  by 
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(2 .18 )  and l e t  ~ be a s o l u t i o n  of  the e q u a t i o n  ( 2 . 1 )  i n  ~ C I ( I ) N  ~ C 2 ( I ) .  

Then (@, ~ ) E  ~ ( I ,  H I ~ L 2) and ~ s a t i s f i e s  the c o n s e r v a t i o n  of  the 

e n e r g y  

E ( ~ ( t ) ,  ~ ( t ) )  = E(@O , ~0 ) E E ( 3 . 4 )  

and the e s t i m a t e s  

w h e r e  

i l lm ( t )  I12 <-- e ( E ,  t - t O) 

ll&(t)ll  ÷ IIv (t)ll  t - to )2  

(3.5)  

(3.6)  

e ( E ,  T )  = i l~ol l  2 cosh a I~ l÷ (E ÷ a 2 I I%11~)  I / 2  a - i  s i n h  a I~ I  

We can now s t a t e  the bas i c  g l o b a l  e x i s t e n c e  and un iqueness  r e s u l t  f o r  

f i n i t e  energy s o l u t i o n s .  

P r o p o s i t i o n  3 .2 .  Let f s a t i s f y  (A1, ( 1 . 3 )  and (A2) .  l e t  (~0 ,~0)  ~ Xe, 

l e t  t O ~ • and l e t  ~ 0 )  be d e f i n e d  by ( 2 . 1 8 ) .  Then the e q u a t i o n  ( 2 . 1 )  

has a un ique  s o l u t i o n  ~ such t h a t  ( ~ , ~ ) ~  ~ ( ~ ,  X ) .  That s o l u t i o n  
e 

s a t i s f i e s  the c o n s e r v a t i o n  of  the energy ( 3 . 3 )  and the bounds ( 3 . # )  

and (3.5). 

Let p, r, q and ql be as in Proposition 3.i. Then the solution 

is unique in ~lloc(~)O ~321o0(~). 

The p roo f  i s  an immediate consequence of  p r e v i o u s  r e s u l t s .  The e x i s t e n c e  

of  g l o b a l  s o l u t i o n s  f o l l o w s  from P r o p o s i t i o n  2.3 and the a p r i o r i  

e s t i m a t e s  of  P r o p o s i t i o n  3 .1 ,  the un iqueness  i n  ~C 1 1 o c ( ~ ) ~  ~C21oc(~)  

f o l l o w s  from P r o p o s i t i o n  2.2 and the un iqueness  in  ~ ( ~ ,  X e) f o l l o w s  

from the f a c t  t h a t  any s o l u t i o n  i n  L l o c ( ~  , X e) be longs to ~ l l o c ( ~ ) A  

~ C 2 l o c ( ~ )  (see Lemma 3.3 of  [2] ) .  
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APPENDIX 

In this appendix we collect some basic facts about the homo- 

geneous Besov and Sobolev spaces, Additional information can be found 

in [1] , [lO] and in the Appendix of [2]. 

We define the closed subspace Z = Z(~ n) of ~ = ~(~n) by 

Z = {u e ~o = ( D ~ G ) ( O )  = 0 f o r  any  m u l t i i n d e x  ~}  

The dual of the inclusion map Z c ~ is a surjection ~ from ~ ' to Z' 

the kernel of which are the polynomials P, so that Z'= ~'/P. 

L e t  now ~ e  ~ ( ~ n ) ,  with 0 % ~ ~ i ,  ~ ( ~ )  = l f o r l ~  1%1 and 

~ ( ~ )  = 0 f o r  I~ I  ~ 2,  and d e f i n e  f o r  any j ~ 

~j (~)  = ~(2-J~) ~ ( 2 - ( J + l ) ~ )  

With any u ~ ~ we can associate the sequence of functions {~j . u E uj}, 

J ~ ~ . That sequence is actually defined for u ~ Z' since u. = 0 for 
J 

u E P. For any p ~ ~ and any r and s with 1 ~ r , s ~ ~ , we define the 
homogeneous Besov spaces 

= {u e z ,  :{ z 2JPs l lma .u l~} l / s  ~tlu; B P ~  II 6p 
rS j rs 

and the useful auxiliary spaces 

#P = {u e Z '  : 11{Z 12JPmj*ulSt l /Sl l r  ~ Ilu; FP II < ~I 
rs j rs 

with obvious modifications if s = ~. The factor 2 p in the sums mimicks 

a derivative of order p. All those spaces are 6anach spaces and satisfy 

the following continuous embeddings 

I ~p c f3 p 
r s  r s  

if 1 % r % s % ~, and 

~P C I ~p 
r s  r s  

if 1 $ s $ r $ =, This result allows one to compare the homogeneous 

Besov spaces to the homogeneous Sobolev spaces to be defined below. 

For any p ~ ~, for any u ~ Z we define the operator m p by 
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One sees by inspection that ~P maps Z into Z and therefore by duality, 

Z' into Z'. The space X s U L r is embedded in ~l and therefore in 
l~r<~ 

Z' so that, since any u ~ ~(X) i~ the image of only one element in X, 

the space X is canonically embedded in Z'. For any p, for any r with 

1 ~ r < ~ , we define the homogeneous Sobolev space HP by 
r 

HP = m-PL r 
r 

E q u i p p e d  w i t h  t h e  norm I l u ;  AP]Ir = IPPullr ' HPr becomes a Banach  s p a c e .  

A non trivial argument shows that FP = HP for 1 < r < ~, so that the 
r2 r 

previous embeddings imply 

6P c ~P c 6 p 
r2 r rr 

if 2 ~ r < ~, and 

~P c ~P c ~p 
rr r r2 

i f  1 < r < 2 .  

F o r  o u r  p u r p o s e s  t h e  u s e f u l  S o b o l e v  i n e q u a l i t i e s  i n  Besov  s p a c e s  

t a k e  t h e  f o r m  o f  t h e  f o l l o w i n g  c o n t i n u o u s  i n c l u s i o n  

BP C ~o- 
r2 9~2 

with n/r - p = n/& - ~, and i ~ r g R g ~ In particular 

6 p C L ~ 
r2 

w i t h  n / r  - p = n /  ~ , 2 g ~ and i g r ~ ~ < 

F i n a l l y  we q u o t e  a r e s u l t  o f  g r e a t  use i n  d e a l i n g  w i t h  non l i n e a r  

p r o b l e m s  i n  Besov  s p a c e s  ( s e e  Lemma 3 . 2  o f  [ 2 ] )  : 

Lemma A . 1 .  L e t  f E ~ i (  ~ ,  ~ )  w i t h  I f ' ( z ) l  = c I~ I p - i  f o r  some p, 1 g p 

< ~ .  L e t  0 < p < i ,  l e t  i g r g k g ~ and 1 / s  = I / r  - i / k .  t h e n  t h e  

f o l l o w i n g  i n e q u a l i t y  h o l d s  

I I f (u)~ 6Pr211 = < Cllu; ~aP21111 wIP-II Is 

f o r  a i l  u such  t h a t  u ~ L m f o r  some m, i < m < co and such  t h a t  t h e  no rms  

i n  t h e  r i g h t  hand s i d e  a r e  f i n i t e .  
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i. INTRODUCTION AND GENERAL BACKGROUND 

In this lecture, we describe some implications of the approximate 

conformal invariance of the nonlinear wave (NLW) equation on the time 

decay of its solutions. The equation under study is 

~0 - ~ - A~ = -f(V) (1.1) 

where ~ is a complex valued function defined in space-time ~n+l, 

the upper dot denotes the time derivative, A is the Laplace operator 

in n, and f is a nonlinear complex valued function, a typical form 

of which is 

f(~) = i %01%~ IP -I (i .2) 

with 1 ~ p < ~. The question under study is a special case of the more 

general question of determining the asymptotic behaviour in time of the 

solutions of an evolution equation for which the global Cauchy problem 

can be solved in a reasonably general fashion. It is known that an 

important tool for that purpose consists of a priori estimates derived 

from exact or approximate conservation laws associated with the equation. 

Another example which will be considered here for comparison, is that 

of the nonlinear Schr~dinger (NLS) equation 

= _ 1 
i ~ ~ A~ + f(~) (1.3) 

*Laboratoire associ~ au Centre National de la Recherche Scientifique. 
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with a similar interaction f, together with its approximate pseudo- 

conformal conservation law [43. 

It is known (see [103 and references therein contained,) that for 

initial data (~(0) = ~0' ~(0) = ~0 ) in the energy space X e ~ H 1 @ L 2, 

the global Cauchy problem for the equation (i.i) has a unique solution 

which is a continuous function of time with values in X e under as- 

sumptions on f that reduce to i a 0 and p < 1 + 4/(n-2) in the special 

case (1.2). Furthermore ~ satisfies the conservation of the energy 

E(%°(t) , ~ (t)) = E( ~0' ~0 ) (1.4) 

for all t e ~, where 

11 • il 2 denotes the norm in L 2 ~ L2(~ n) and V(~) = 21(p+l)-li ~ 1 p+I in 

the special case (1.2) (See the general definition in Section 2 below). 

Similar results hold for the NLS equation (1.3). 

Conservation laws for equations such as (I.i) and (1.3) formally 

result from the fact that the equation (i) is derived from a variational 

problem and (ii) is invariant under a one parameter continuous group 

of transformations, through the use of Noether's theorem (see [33 and 

references therein quoted). One is generally given a Lagrangian density 

( ~, {$ ~}) where {~ ~; 0 ~ ~ N n} ~ {~0 ~ ~ ,{~j~ ;i ~ j N n} 

V~ } is the set Of first order derivatives of ~ , and the equation 

is the Euler - Lagrange equation associated with the action A A defined 

for any open subset A c ~n+l with smooth boundary by 

J A A = ~ ( ~,{~ ~dt dx 

With a one parameter transformation group of ~n+l under which the 

equation is invariant, there is associated an infinitesimal transfor- 

mation of ~n+l , namely a vector field in ~n+l {~x~; 0 _ < ~ < _ n} = 

{~x 0 ~ ~t, {6xJ; 1 ~ j ~ n} ~ 6x} and an infinitesimal transformation of 

the field ~ ~. If ~ satisfies the variational equation, the infini- 

tesimal transformation of the action is easily seen to be 

~A A = -J~ 
j~ d~ 

where d~ is the area n-form in ~n+l , J~ is the current vector 
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we use the summation convention of Relativity Theory, and the Minkowski 

metric gl~ used to raise and lower indices is defined by g00 = -gii = I, 

gl~ = 0 for ~ ~ ~ . If the action is invariant, namely ~A A = 0 for any 

A, then the current J~ is conserved, namely 3 J~ = 0. Taking for A 

the reg£on s ~ x 0 ~ t and assuming sufficient decay at infinity in space, 

one obtains the conservation law Q(t) = Q(s) for all s and t, where 

the charge Q(t) is defined by 

J j0 
Q(t) = x0=t dx . 

If the invariance is only approximate, one obtains only the approximate 

conservation law 

Q(t) - Q(s) = I R(T)dT 1.6) 
~s 

with 

Jx J~ dx R(T) = 0=T ~ 

In the case of the NLW equation (i.i), the Lagrangian density is 

(~,{~ ~}) = [+]2 _ [v~i 2 _ v(~) ~ m~ ~ - v(~), where V is 

the same potential function as in the energy (1.5). The relevant trans- 

formations of space-time are those of the conformal group, generated 

by the Poincar~ transformations, space-time dilations, and the trans- 

formations obtained therefrom by conjugation under the external auto- 

morphism x ~ ÷ x~(x~x~) -I. Of special interest are the transformations 

thereby obtained from space-time translations. The corresponding 

infinitesimal transformation of space-time is given by 

~x ~ = -2a ~ x% x ~ +x ~ x k a u 

where a = {a ~} is a space-time vector, and the transformation of the 

field ~ is given by 

~= - ~x % ~ + (n-l)a ~ xl ~ . 

Taking in particular for a the vector {I, 0, .... 0} , one obtains the 

relevant conservation law in the form (1.6) with 
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Q(t,~,~) = Q0(t,~,~) + Ql(t,q) , 

2 + t 2 2 t 2 Qo(t ,~ ,  ~ ) =  IlrelL2 II~ll~ + I lrv~ll2 * I lv~ll~ 
+ 2t Re <~, 2X.q~ + (n-l)~ > - (n-l)I[~II~ , 

(t 2 r 2 ) 
Q1 (t, ~ ) = Jdx + 

f R(t,~) = 2t dx W(~) 

W(~ ) = (n+l) V(~) - (n-l) Re ~ f(~) , 

v(% ° ) , 

(I .7) 

(1.8) 

(1.9) 

(i .10) 

(1.11) 

where r = Ixl; <.,.> denotes the scalar product in L 2. Q as given by 

(1.7)-(1.9) will be called the conformal charge, and Q0 and Q1 will be 

called the kinetic and potential parts thereof. By an elementary compu- 

tation, Q0 can be rewritten in the form 

Q0(t, ~ , ~) : II t?~+ x~ll~ + IIL~II~ + II x.V~+ t@ + (n-l)~ II~ 

(I.12) 

where L = x × V is the angular momentum operator, which shows in 

particular that Q0 is non negative. 

The fact that the conformal conservation law implies some time 

decay of the solutZons appears immedi~tly in the case of the single 

power interaction (1.2), where V(~) = 21(p+l)-ll q [p+l and 

W(% 0) = [n+l - (p+l)(n-l)/2] V(~) (1.13) 

In fact for I a 0 and p+l a ~I H 2(n+l)/(n-l), or equivalently p a 1 + 

4/(n-l), one has W(~) ~ 0, t R(t,~) ~ 0 and therefore Q(t) ~ Q(0) 

for all t ~ ~ . Since Q0 a 0, one obtains by using only Q1 

II ~(t)llp+ 1 ~ C t -2/(p+l) (1.14) 

where II • II i denotes the norm in L £ H L£(~n). That decay property was 

used extensively in previous works on the NLW equation [24]. 

In order to assessthe strength of the decay property (1.14) it is 

useful to compare it with the decay available for solutions of the free 

wave equation ~ ~ = 0, for which one obtains at best 

I[~ (t) I[Z ~ C(l+Itl) -Y(£) (1.15) 
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y(Z) = (n-l) (1/2-1/£) 
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(1.16)  

That the decay (1.15) is optimal is easily seen in the special case of 

the dimension n = 3 where the solution of ~ ~ = 0 with initial data 

( ~0 = 0, ~0 ) is given by 

(t) = (4~t)-I 6 (r-t)* 90 

where * denotes the convolution in ~n, and can be explicitly computed 

for 90 = x(r ~ a), the characteristic function of the ball of radius a, 

to be 

~(t) = (4r) -I [a2-(t-r) 2]+ 

for t a a. More generally solutions of Q~= 0 with the decay (1.15) can 

be constructed with the help of the following lemma. There we use the 

notation ~ = -/~ , and in addition toy(£)defined by (1.16), we also use 

~(£) and 6(~) defined by 

~(1) E n-16(Z) ~ 1/2 - i/£ 1.17) 

Lemma i.i [17, 20, 26]. Let n a 2, let i and s satisfy 

1 + 6(s) -< 6(£) -< Min(l+ ~(s), n(l+ 6(s))) 1.18) 

and 2 < £ < ~ if n = 2. Then the following estimate holds 

II m-le±iet ~II£ ~ Cltl I-6(£)+6(s) II~II s 

for all t ~ 0 and all q e L s. 

1.19) 

In particular, the optimal decay (1.15) for solutions 

~(t) = K(t)90 + K(t) ~0 1.20) 

of 0~= 0, where K(t) = -i sin~t and K(t) = cos~t, can be obtained 

for suitable initial data ( ~0' 90) by using Lemma i.i in the border- 

line case ~(i) = l+6(s). 
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Since 7(p+l) = 2/(p+l) for p+l = il, the decay (1.14) obtained from 

the conformal conservation law coincides with the optimal decay (1.15) 

in that limiting case, while it is generally weaker in the allowed range 

p+l ~ £i" That result can then be improved (actually has been improved 

in previous works [24, 29]) by substituting the decay (1.14) in the 

integral equation associated with the equation (I.I) and performing 

various estimates thereof. It is however a natural question to ask 

whether stronger results can be obtained more directly by a more effi- 

cient application of the conformal conservation law, using in particular 

the kinetic part Q0 of the conformal charge. For that purpose, it is 

useful to compare the case of the NLW equation with the simpler case 

of the NLS equation (1.3). The solutions of that equation satisfy the 

pseudo-conformal conservation law which is similar to the conformal 

conservation law of the NLW equation [4]. That law takes again the form 

(1.6) where however (the subscript S stands for Schr~dinger) QS = Q0S 

+ QIS with 

Qos(t,~ 0) -- ~ II (x+it?) ~ II (1"8) S 

Qis(t, ~) = t 2 fdx V(~) (1.9) S 

Rs(t,~) = t~dx WS(~0) (I.i0) S 

WS(~) = (n+2) V(~) - n Re ~ f(~). (i.ii) S 

In the case of a single power interaction (1.2), one obtains 

WS(~) = In+2- (p+l) n/2]V(~) (i.13) S 

so that for ~ a 0 and p+l a 2(n+2)/n or equivalently p ~ l+4/n, one has 

as before WS(~ ) ~ 0, t Rs(t , ~) ~ 0, Qs(t) ~ QS(0) for all t in ~ , 

and the solution ~ again satisfies the decay (1.14). The optimal time 

decay available for solutions of the free SchrSdinger equation i ~ = 

(-I/2)A~ is known to be 

ll~(t) ll~ ~ C(l+Itl) -6(~) (1"15)s 

where 6(i) is defined by (1.17). The decay (1.14) is again identical 

with the optimal one in the limiting case p+l = 2(n+2)/n, and weaker 

in the allowed range p+l a 2(n+2)/n. In the NLS case however, one can 

obtain easily a better result by using directly the kinetic part Q0S 
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of the pseudo-conformal charge. For that purpose we introduce the free 

Schr~dinger group U(t) = exp(i(t/2)A). For each t ~ 0, U(t) can be re- 

presented as the operator of convolution with the function (2~it) -n/2 

exp[ix2/(2t)]. Furthermore, the following identity holds 

J -z x i itV=U(t)x U(-t) . (1.21) 

One can then prove the following estimate. 

Lemma 1.2 [4]. Let 2 -< £ ~ 2* -= 2n/(n-2), £ < ~ if n = 2. Then 

IJ ~o IJ~ -< cl t l - s  (~1 II x u I - t / v  I1~/~> II q~ ll~ -6 /~ /  (i .22) 

for all t # 0 and all ~ for which the right hand side is finite. (Here 

C is a Sobolev constant). 

Proof By an homogeneity argument, it is sufficient to prove the result 

for t = -i. In that case U(1) = 8S 6~S where ~: is the Fourier transform, 

0 is a constant phase factor, and S is the operator of multiplication 

by exp(ix2/2). Then 

I[x U ( 1 ) ~  ° II 2 = J ix~FSq ' I I2  = IiVs qolI2 

by the Plancherel theorem, while 

liVll~ = Jls~li~_<c Iivs~li~ I~l lls~IJ~ -~(~I 

by a standard Sobolev inequality. This proves the lemma. 

Q.E.D. 

Applying Lemma 1,2 with ~= ~(t) to a solution of the NLS equation 

(1.3) yields the optimal decay (i.15) S for 2 £ £ ~ 2* whenever Q0S is 

uniformly bounded in time, and in particular in the case of a single 

power interaction (1.2) with ~ a 0 and p+l a 2(n+2)/n considered 

previously. 

The first main result reported in this lecture is the analogue of 

Lemma 1.2 in the case of the NLW equation, yielding in particular an 

estimate of the L £ norm of its solutions for 2 ~ £ ~ 2* with the optimal 

time decay (1.15) in terms of the kinetic part Q0 of the conformal 

charge (See Proposition 3.2 below and [8] for more details). Actually 

we shall present a stronger result, since the basic estimate involves 

space-time weighted L~ normsand thereby yields an additional decay in 
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space. As in the NLS case, that estimate will emerge as a variant of 

a Sobolev inequality, but of a much more complicated type than the 

elementary estimate (1.22). 

The previous considerations and results cover the "easy" case 

where the conformal conservation law immediately implies the bounded- 

ness of the conformal charge, corresponding to p+l ail in the special 

case (1.2). In order to guess what time decay should be expected in 

the more difficult case p+l < ~i' it is useful to consider again the 

situation for the NLS equation. The problem of the time decay of solu- 

tions can be regarded as part of the general theory of Scattering for 

that equation [4, 7, 27, 28]. Another part of that theory is the con- 

struction of dispersive solutions, namely of solutions that behave 

asymptotically in time as solutions of the corresponding free equation, 

obtained by dropping the interaction term f. Dispersive solutions can 

be constructed by solving the Cauchy problem with infinite initial 

time by a contraction method, in suitable functional spaces that include 

some time decay in their definition. The method can be implemented under 

assumptions on f which reduce to a lower bound on p in the special case 

(1.2). That lower bound depends on the choice of the time decay that 

appears in the relevant functional space. If that decay is chosen to 

be as strong as the optimal decay (I.15)S, the lower bound PS(n) on p 

in the NLS case turns out to be the (positive) root of the equation 

p ~(p+l) = 1 (1.23) 

or equivalently 

2 
n p -(n+2) p - 2 = 0 , (1.24) 

namely Ps(2) = 1 + /~, Ps(3) = 2, etc. Remarkably enough, it can be 

shown that the kinetic part of the conformal charge still remains boun- 

ded in time and therefore that the optimal decay still holds for all 

p > PS(n) [14, 27, 283. We state the result in the special case (1.2) 

onlyjin a somewhat loose way. 

Proposition i.i [14, 27, 281 . Let Ps(n) < p -< 2(n+2)/n, let q~0 E H I , 

with x ~0 c L 2, and let ~ be the(~nique Hl-valued) solution of the 

NLS equation (1.3) with f given by (1.2) and I >- 0, with initial data 

~0 at time zero. Then 

(i) Qos(t, ~(t)) is uniformly bounded in time. 

for 2 _< i <- 2* (i<~ if n=2) . (2) ~ satisfies the decay estimate (I.15) S 
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Sketch of proof. It suffices to prove part (i), from which part (2) 

follows 5y Lems~a i~2. The proof proceeds in two steps. 

(I) By reestimating Wsin terms of V in the pseudo-conformal conservation 

law, one obtains a differential inequality for the pseudo-conformal 

charge which by integration yields (among ether) the decay (i.15) s for 

the special value ~ = p+l. 

(2) One has to estimate J~ (see (1.21)) in L 2 uniformly in time. Now 

J is easily seen to commute with i d/dt + (I/2)A, so that J ~ satisfies 

the differential equation 

i ~ J~ = - ~ A J %0 + jf(%o) 

and therefore the associated integral equation 

t 
J ~(t) = U(t)x ~ 0 - i J aT U(t-T) Jf(~(T)) 

% J  

Let now S - S(t) - exp(ix2/2t). 

J = S it V S -I 

(1.25) 

(i .26) 

Then J also satisfies the relation 

(1.27) 

so that 

Jf(~ ) = S itVS-If(% ° ) = S itV f(s-l% ° ) 

3f. -i. ~f = S it(vs-l~ ) ~(S ~ ) + S it(vs-l~ ) ~(S-IT ) 

3f ~f = (j~) ~- (j~) 
aT 

Therefore (1.26) is a linear equation for J ~ regarded as an indepen- 

dent function. One can then use that equation to estimate J ~ in L 2 

uniformly in time by using known estimates on the operator 

t 
h ÷ |dT U(t-T)h(T) 

Jo 

[16] together with the estimate (i.15) S with £ = p+l obtained in step 

1 in order to control the factors ~f/~ and ~f/3~coming from Jf(~ ). 

That step turns out ot work precisely under the condition p > PS(n). 

Q.E.D. 
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The preceding line of argument can be extended to some extent to 

the NLW equation in the difficult case p+l ~ il, but one encounters 

several difficulties which somehow restrict the scope of the results, 

as we now explain. The optimal decay rate (1.15) in the NLW case has 

6(I) replaced by y(1) as compared with the NLS case (or for that matter, 

with the case of the massive nonlinear Klein-Gordon (NLKG) equation 

~ + ~ + f(~) = 0). The shift from n to n-i is best understood by 

noticing that dispersion in the massless case D • = 0 occurs (at least 

in odd dimensions by the Huygens principle) in (n-l)-dimensional sub- 

manifolds instead of n dimensional space in the massive case and in 

the SchrSdinger case. Correspondingly, one expects the contraction 

argument leading to the proof of existence of dispersive solutions of 

the NLW equation (i.I) with interaction (1.2) to work for p > P0(n) 

PS(n-l) (i.e P0(3) = 1 + /~, P0(4) = 2,...). That lower bound is known 

to be optimal, in view of the existing blow up results for attractive 

interactions and small initial data in the opposite case p ~ P0(n) 

[ ii, 15, 22]. A natural tool to be used in order to implement the con- 

traction argument is the estimate of Lemma i.i., which actually produces 

the optimal decay (1.15) in the borderline case ~(~) = 1 + 6(s). Un- 

fortunately, the use of that lemma produces the expected result only 

under the stronger condition p > Pl(n) where Pl(n) > P0(n) is the 

(larger) root of the equation 

n(n-l)p 2 - p(n 2 + 3n - 2) + 2 = 0 (1.28) 

[6, 18, 19, 233 . Extending the contraction argument from Pl(n) down 

to P0(n) is a highly non trivial matter and has been done so far only 

in dimensions 2 [123 and 3 [15, 21] for special classes of solutions, 

by using in an essential way the positivity properties of the propaga- 

tor for the free equation ~ ~ = 0, and by using space-time weighted 

norms instead of simply Li-norms. 

The general scheme leading to the analogue of Proposition I.I can 

be implemented in the NLW case; in particular the expression (1.12) 

for Q0 is an adequate substitute for the expression Q0S = (i/2) Jl J ~JJ~. 

Unfortunately the NLW analogue of the first step in the proof of that 

proposition does not yield (for £ = p+l) the optimal decay (1.15) but 

only the weaker decay 

LI ~(t) llk < c It[ 1~2~(~) (1.29) 
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A simple power counting argument then shows that the remaining part 

of the proof can be expected to hold only under an assumption on p 

which allows for the contraction argument mentioned previously to work 

when only the decay (1.29) is used in the definition of the relevant 

functional space. That assumption turns out to be p > P2(n) where P2(n) 

> Pl(n) is the (positive) root of the equation [25] 

p(26(p+l) - i) = 1 (1.30) 

or equivalently 

(n-l)p 2 -(n+2)p- 1 = 0 . 

Thus, although one may conjecture that the analogue of Proposition i.i 

holds in the NLW case for p > P0(n), the available method of proof is 

restricted to p > P2(n) 

A final difference between the NLS and NLW cases is the technical 

fact that the estimates on the integral equation are substantially 

more difficult in the latter case than in the former. As a consequence 

the expected results have been proved only for certain dimensions, 

namely n = 3 and n = 4 [ 9].The case of higher dimension is technically 

more complicated and has not been worked out in detail. The case of 

dimension n = 2 can be analyzed rather completely down to P2(2), but 

is plagued with special difficulties in the form of logarithmic factors 

[8]. The case n = 1 does not seem to be interesting in the present con- 

text. 

The second main result reported in this lecture is the analogue of 

Proposition I.i in the case of the NLW equation, in the case of space 

dimension n = 2, 3 and 4 and under assumptions on f that reduce to 

P2(n) < p < i+4/(n-2) in the special case (1.2), according to the pre- 

ceding discussion. 

The remaining part of this lecture is organized as follows. In 

Section 2 we state the conformal conservation law for the NLW equation 

with the relevant functional analytic details, including in particular 

the choice of the relevant space of initial data and the natural as- 

sumptions on the interaction f. In section 3, we state the basic apriori 

estimates in terms of the kinetic part of the conformal charge, extend- 

ing Lemma 1.2 to the NLW case, and we give a brief sketch of their 

proof. Finally in Section 4, we derive therefrom the resulting decay 

estimates of the solutions of the NLW equation, first for general n z 

2 in the easy case corresponding to p+l z ~I' and then for n = 2, 3, 

4 in the harder case P2(n) < P ~ ~i - i. We refer the reader to [83 
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for a complete treatment of the special case n = 2 and to [8,9] for 

the details of the proofs. 

We conclude this section with the remark that, in the framework of 

Scattering Theory, the results of Sections 3 and 4 are the essential 

ingredients of the proof of asymptotic completeness (for arbitrarily 

large initial data). 

2. THE CONFORMAL CONSERVATION LAW. 

In order to convert the formal derivation of the conformal conserva- 

tion law sketched in Section 1 into an actual proof, it is convenient 

to apply the following general method. One first regularizes the equa- 

tion by introducing suitable cut-offs. The solutions of the regularized 

equation have sufficient smoothness and decay at infinity in space to 

allow for the proof of a regularized version of the conservation law 

by the same computations as used in the preceding heuristic derivation. 

One finally removes the cut-offs by a limiting procedure. 

The regularization uses a local cut-off h and a space cut-off g at 

large distances. The cut-off h is taken as a non negative even function 
n 

in ~o(~ ), such that IIhll I = i, and the cut-off g as a function in 

~l(~n) with compact support and such that 0 ~ g ~ 1 and g = 1 in some 

region around the origin. Because of the finite propagation speed for 

the equation (i.i), the space cut-off can be introduced either in the 

initial data or in the interaction. We choose the second possibility 

because of the intrinsic interest of localized interactions. We replace 

the equation (i.i) by the regularized equation 

D~ + h * g f(h *~ )= 0 (2.1) 

and consider the Cauchy problem for (2.1) with regularized initial data 

(~(0), ~ (0)) = (h *~0' h * ~0 ). 

The limiting procedure consists in letting h tend to a 6 function 

and g tend to 1 in the following sense : we choose fixed h I and gl as 

described above; for any positive integer j, we define hj(x) = jnhl(JX) 

and gi(x). = g(x/j), we take h = hi,~ g = gj and we let j tend to infinity. 

The solutions of the regularized equation (2.1) tend to solutions of 

(i.i) in a sense which makes it possible to take the limit in the con- 

servation law, provided the interaction f and the initial data (~0, 90) 

satisfy suitable assumptions. These assumptions basically ensure that 

(i) the Cauchy problem for (I.i) can be solved in a unique way, and 

(ii) the conservation law has a meaning. 
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The natural condition on (~,0) for the energy E(~ ,~) and the 

kinetic part of the conformal charge Q0(t, ~,~) to be defined is that 

(~,0) ~ Z ~ ~i • Z0, where 

and 

= L2: 7. 1 {~• V~, r V ~o • L 2} (2.2) 

= L 2 70 {0 £ L2 : r ~ • } (2.3) 

The spaces 7.1 and 7.0 are Hilbert spaces with norms 

2 + iiv~l12 2 II~'; 7.~112= II ~ 112 2 + lit v~l12 

I10; 7.oli 2= ll~ll~ + Iir01[22 

We shall consider only initial data (~0' 00) • 7.. 

The assumptions on the interaction f consist of those required to 

solve the global Cauchy problem with uniqueness (namely (AI) and (A2, 

a, b) below) supplemented with an assumption which prevents Q1 (t, ~) to 

tend to -~ while Q0(t, ~ ,~) tends to +~ for fixed Q(t, ~ ,~)(namely 

(A2c)). They can be stated as follows. 

(AI). f c ~i( ~, ~) and f(0) = 0. If n -> 2, f satisfies the estimate 

If'(z)l ~ Max(laf/azl,l~f/a~l) -< c(Izl pl-1 + Izl p2-1) (2.4) 

for some PI' P2 with 1 -< Pl -< P2 < i+4/(n-2), and all z ¢ C. 

(A2). (a) There exists a function V ( ~ i( ~, ]{) such that V(0) = 0, 

V(z) = V(Izl) for all z £ C , and f(z) = ~V/~. 

(b) V satisfies the estimate 

V(R) -> - C R 2 (2.5) 

for some C >- 0 and all R ~ 0. 

(c) V satisfies the estimate 

V(R) -> - C R 2+4/n (2.6) 
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for some C a 0 and all R a 0. 

We can now state the conservation law, first with the cut-off g 

still included, and finally with both cut-offs removed. 

Proposition 2.1 Let f satisfy (AI) and (A2 a, b), let ( ~0' ~0 )~ ~' 

let t o ~ ~ and let ~ be the (unique Hl-valued) solution of (i.i) with 

initial data (~0' ~0 ) at time t o . Then (~ ,~ ) ~ ~(~ , Z) and for all 

s, t c ~ , the following identity holds: 

Q0(t, ~°(t), ~(t)) + fdx(t2+r 2) g V(~ (t)) = 

Q0(s, ~°(s), ~ (s)) + /dx(s2+r 2) g V((~ (s)) 

+ ~st2TdT] dx{g W(~(T))+ (x. Vg)V(~° (T))} (2.7) 

Proposition 2.2 Let f satisfy (AI) and (A2 a, b, c), let ( ~0' ~0 )e Z" 

Assume that 

'dx r 2 ]V( ~ 0  ) ] < oo 

Let t O ~ ~ and let ~ be the (unique Hl-valued) solution of (i.i) with 

initial data (q0' ~0 ) at time t o . Then (~,~) e ~(~, Z), the integral 

f dx r 2 V(~) is absolutely convergent for each t ~ ~ and continuous 

with respect to t, and ~ satisfies the conformal conservation law (1.6) 

- (I.ii) for all s, t e ~, i.e. (2.7) with g = i. 

We refer to E8], Section 2 for the details of the proofs. 

3. CONFORMAL ESTIMATES 

In this section, we derive some a priori estimates involving the 

kinetic part of the conformal charge, thereby providing an analogue of 

Lemma 1.2 in the case of the wave equation. The starting point is the 

expression (1.12) for Q0(t, ~, ~), where we regard t as a real positive 

parameter and ~ , ~ as two independent functions in E 1 and Z0 respective 

-ly. We use two different methods. 
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The first method exploits Lemma i.i. For that purpose, we first 

rewrite Q0 in the form 

2 -itv~ll~ Q0(t,~,~) = llt?~ + x~l12 + llx~- (3.1) 

with ~ = ~ , after an elementary computation involving the commutator 

of x with w . We then recombine ~ and ~ into two new functions ~± 

which would be the positive and negative frequency parts of ~ if 

were a solution of 0~= 0 and ~ its time derivative, namely 

~2 = (~±i~-I~)/2 . (3.2) 

One can then rewrite Q0 as 

Q0(t, ~ ,~) : 2 E ll(xw ± it?)~±[l~ (3.3) 
± 

= 2 E l~wexp(±i~t) ~±ll~ (3.4) 
± 

where we have used the identity 

exp(~iwt) x exp(±iwt) = x ± i t w-iv (3.5) 

We can then prove the following estimate. 

Proposition 3.1 Let n ~ 2, 2 < % ~ ~i' and (~, ~) 6 ~. Then ~ and 

w-l~ belong to L £ and satisfy the estimates 

II %0 II~ , iI~-i ~lli -< c t-Y(£)E0(~,~) ~(Z)/2 

where E0(~,~) = II~ II 2 + llV~°Ii~ • 

Q0(t , ~0 ,9) (l-~(Z))/2 

(3.6) 

Proof. we express ~ and ~ in terms of ~ ± by using (3.2). We then 

estimate ~± in L i by Lemma I.i with ~(~) = 1 + 6(s) and obtain 

ll~±IIz ~ c t -T(~) II~e ±i~t ~±II s 

C t -~(£) II~ e ±iwt ~±II~ (1) l~e e ±i~t ~±II~ -~(£) (3.7) 

where the second inequality is obtained by applying the H~lder Inequali- 

ty in the form 
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II x IIs ~ 11 ~a2 + x 2 ) - 1 / 2 1 ~  1[( a2 + x2) l /2xl [  2 

with i/s = I/m + 1/2 and optimizing with respect to a. The result then 

follows from (3.4), (3.7) and the fact that 

2 
E0( q ,~) = 2 ~ 11~±112 ± 

Q.E.D. 

Although Proposition 3.1 is a result of the type we are looking fo~ 

it has some shortcomings. The limiting case i = 2 is excluded by the 

use of the H~ider inequality, whereas (3.6) for g = 2 and n a 3 is simply 

the Hardy inequality. Furthermore the upper limit g ~ gl is not optimal, 

as one expects the result to hold for all £ ~ 2*(g < ~ for n = 2). The 

upper limit £ = 2* for n a 3 is sharp however, as shown by the following 

argument : for ~ = ~+, (3.7) takes the form 

II 9 I1~ ~ c t -Y!£) l lw ~ I1~ (£) II(x~ + i t V ) ~  H~ -e(£} 

= c ti-~(~)ib 9 ll~(g) lf xt-lm + iV)~ I1~ -~(g) 

which for smooth and rapidly decaying ~ implies [[ ~ l[ k = 0 and therefore 

= 0 if 6(g) > i, or equivalently i > 2", by letting t tend to infinity. 

The second method will remedy the previous defects. We restrict our 

attention to the case n a 3 and refer to [8] for a detailed treatment 

of the case n = 2 which has additional complications in the form of 

logarithmic factors in the estimates. Since we want to estimate ~ in 

terms of Q0 which contains another function ~ independent of ~ , we 

lose nothing by first minimizing Q0 as a function of ~. We introduce 

an auxiliary radial function h c ~ ((0, ~); ~ ) and we use the notation 

= x/r, @ = (t2+r2) I/2- 

Lemma 3.1 Let n a 3, let h e ~(0, ~); ~ ) with h and rdh/dr in L~(~ +) 

and let ~ c ~i ~ Then 

2 
em(t,~) z Inf O0(t, ~, ~) = I18 r -I L~II 2 

+ I[~i{ (t2-r 2) ~.V~ -(n-l-8 2 r -2 h)r ~ }1[~ 

+ < ~ , {8 2 r -2 h(n-2.h) + (t 2 r-2-1) rdh/dr} • > (3.8) 
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~e refer to [8] for the proof of Lemma 3.1, which is an elementary 

computation since Q0(t, ~ , ~) is a quadratic function of ~. That lemma 

provides a control in the L2-norm sense of (i) the angular derivatives 

of ~ with an extra factor 0/r, (ii) the radial derivative of ~ with 

a factor which vanishes on the light cone, since 

0-11t2-r21R.? ~ ~ It-r I d~/dr 

(by choosing h = (n-l)r2/O2), and (iii) ~ itself with an extra factor 

0/r (by choosing h = (n-2)/2). The last result is a variant of the 

Hardy inequality. 

We can now state the main result of this section, which improves 

over Proposition 3.1. 

Proposition 3.2 

let a >- 0, let t > 0 and ~ £ E 1. Then ~ satisfies the estimate 

_~ (~) 
II (0r-I)I-6(£) 8Y(£) (8-11t2-r21+ a)~(Z) ~ II£ -< u 0 

x llOr-i ~III-~(Z){IIOr-I L ~ II~ + llOr-i ~ II~ }y(i)/2 

{ iI O-i it2_r~ d~ n 1122 + ll-~- x (-~- + L-- ~o ) a 2 d~ 1122 }~(~)/2 
Zr 

_< C1 Qm(t,~) (l-~(1))/2(Qm(t,%o) + a 2 -~d% ° 122)e(£)/2 

Let n > 3, let 2 _< Z _< 2 , let ~ = Max(k, 2n/(n-l)), 

(3.9) 

where the constants C 0 and C 1 depend only on n. 

The proof is a complicated variant of the elementary proof E13 of 

the usual Sobolev inequality II u I12- ~ C llVull 2. In the latter one starts 

with the estimates 

Ivlxll < i1j21 /dr il j VlXl , x: 3' "" Xn) I 

for 1 ~ j S n, one applies HSlder's inequality repeatedly, one substi- 

tutes v = lul p for a suitable p, and one estimates the derivatives of 

u in L 2. Here we proceed similarly, but we use angular and radial instead 

of cartesian coordinates, and we introduce suitable weight factors in 

the starting point inequalities so as to reconstruct the weight factors 

occuring in Qm(t,~ ) at the end of the computation. Eventually the 

angular derivatives of ~ are controlled by the term (@/r)L ~ in Qm, 

and the radial derivative is controlled by the radial term in Qm 
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(which yields (3.9) with a = 0) or is left untouched (which gives the 

term with a in (3.9)). We refer to [83 for the details. 

The estimate (3.9) for ~ is stronger than the estimate (3.6) 

of Proposition 3.1 in every respect. In fact, the allowed values of 

range over the interval [2, 2*] for (3.9) instead of the interval 

(2, I13 for (3.6). In the left-hand side of (3.9), the LZ-norm is im- 

proved by various additional factors : the factor (@r-l) l-~(1) yields 

the Hardy inequality, the factor @7(I) yields the time decay t-Y(1)and 

an additional decrease at infinity in space; finally the factor 

(@-llt2-r21)~(Z)yields an additional decay away from the light cone. 

It is interesting to remark that the norm that appears in the 

left-hand side of (3.9) has some similarity with the norm used in [153 

for n = 3 to prove the existence of global solutions for small data or 

equivalently the existence of dispersive solutions of the equation (i.I) 

down to the optimal values P0(3) = 1 + /2, namely (see (4.9a) of [153) 

ll(t+r) ( i+  It-rl)p-2~ll~ 

We finally remark that the estimates of Proposition 3.2 still 

hold if ~ is a scalar field minimally coupled with an external Yang- 

Mills field, with the ordinary derivatives replaced by covariant deri- 

vatives. That property follows from the fact that for any function v 

with values in the space of Yang-Mills potentials or in the space rele- 

vant for the coexisting scalar fields, the following inequality holds 

where I.I denotes the norm in the relevant space, and D the covariant 

derivative corresponding to ~ (see [5], especially the Appendix). 

4. TIME DECAY 

In this section, we apply the previous results to the derivation 

of time decay properties of the solutions of the equation (i.I). Those 

decay properties will result in a straightforward way from combining 

the estimate of Proposition 3.2 (for n a 3) and its analogue for n = 2 

with boundedness properties of Q0(t, ~ ,4 ), and we concentrate our 

attention on the derivation of the latter. We assume throughout this 

section that ( ~0, ~0 ) ~ E and that f satisfies the assumptions (AI) 

and (A2). We need in addition a repulsivity condition (A3) : 
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(A3) f satisfiea the inequalities 

0 ~ (Pl+l) V(z) ~ 2 Re z f(z) (4.1) 

for all z ~ ~ . (Equivalently, V(R) = RPI+Iv(R) where v is a non negative 

non decreasing function from ~+ to ~ ). 

In the case of a single power interaction (1.2) with p = PI' (A3) simply 

says that ~ a 0. Note also that (A3) implies (A2 b, c). 

We first consider the easy case where Pl + 1 a i I 

Proposition 4.1 Let n a 2, let f satisfies (AI), (A2) and (A3) with 

Pl +I a ~i" Let ( ~0' ~0 )~ Z , and let (~,~) be the solution of (i.i) 

in ~ (~ , Z) with initial data ( ~0' 40) at time zero, as described in 

Proposition 2.2. Then Q0(t, q ,~ ) is uniformly bounded in time : 

Q0(t,~,50) -< Q(t, ~,~) <- Q(0, ~D0, ~0 ) 

= l,x 40,1~ ÷ ,,r? ~0 0,,22 + fdx r 2 V( ~0 ) (4.2) 

Proof. The result follows in~ediately from the fact that under the as- 

sumption (A3), one has W(~) ~ 0 and t R(t,~ ) ~ 0 (See (i.i0)-(i.ii)). 

Q.E.D. 

We next turn to the difficult case Pl+l -< i I. We assume never- 

theless that Pl > 1 + 4/n, a condition which is satisfied by the 

values of p, Pl(n) and P2(n), for all n. That condition also makes the 

assumption J dx r 2 V( ~0 ) in Proposition 2.2 unnecessary. We need a 

slightly stronger version of the repulsivity condition (A3) : 

(A3') f satisfies the inequalities 

ClzlPl+l~ (Pl+l) V(z) ~ 2 Re z {(z) 

for some C > 0 and all z ~ ~ (Equivalently, if V(R) 

one assumes in addition that v(0) > 0). 

(4.3) 

= R pI+I v(R) 

We follow the method sketched in the introduction. The first task 

consists in extracting some preliminary decay from the conservation 

law (See (1.29)) 
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Lemma 4.1 Let n a 2, let f satisfy (AI), (A2) and (A3') and let 

- n+l -(Pl+l)(n-l)/2 > 0 (4.4) 

Let ( ~0' 40) e ~' let t o £ ~ and let (~,~) be the solution of (I.i) 

in ~ (~, Z) with initial data ( ~0' ~0 ) at time t o . Then 

re(t) -Q(t,~,~) + E(%o,+) _< m(0) (l+t2) ~ , (4.5) 

Jdx V(~) -< m(0)(l+t2) ~-I 

II ~(t)llPl+l -< C m(O) 
i/(Pl+l) 1-26 (Pl+l) 

(l+Itf) 

(4.6) 

(4.7) 

Proof. From the conservation law and from (A3), we obtain fihe integral 

form of the differential inequality 

7 7 dm/dt = 2t dx W(~) -< 2~ t dx V(~) 

-< 2~t(l+t2) -I m(t) (4.8) 

which implies (4.5)and therefore (4.6). Finally (4.7) follows from 

(4.6) and (A3') 

Q.E.D. 

In order to estimate Q0(t' ~, ~ ), we first rewrite it by using 

(1.12) as 

A 

where in addition to the angular momentum L = x × V , we have introduced 

the operators 

M = tV+ x(d/dt) (4.10) 

D = x . V + t(d/dt) + n-i , (4.11) 

and the sum in the last member of (4.9) runs over A = L, M, D, with 

~A = A~ . The operators L, M and D are the infinitesimal generators 

of space rotations, of pure Lorentz transformations, and space-time 

dilations respectively. The expression (4.9) is the analogue in the 

NLW case of the expression Q0S = (1/2) liJ~ll~ in the NLS case (see 

(1.8~ and (1.21)). Note that in that case, J is the infinitesimal ge- 

nerator of pure Galilei transformations. From the transformation 
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properties of the free wave equation, or more simply from a direct 

computation, it follows that 

[~, A] = 0 for A = L, M ; ~D = (D+2) D , (4.12) 

so that the functions ~A satisfy the equations 

I D ~A + A f = 0 for A = L, M , 

D ~D + (D+2)f = 0 

(4.13) 

The interaction term in (4.13) can be rewritten as 

~f ~f f, Af = ~A ~ + ~A ~ --- CA (~) for A = L, S 

(D+2)f = ~D f, (%o) + (n+l)f -(n-l) ~ f' (~). 

(4.14) 

The Cauchy problem for (I.I) with initial data ( ~0, 40) at time 

zero can be rewritten in the form of the integral equation 

t 
~(t) = ~(0) (t) - (dT K(t-T)f(~(T) (4.15) 

J0 
where 

~0(0) (t) = K(t) U~ 0 + K(t) ~0 0 (4.16) 

Similarly, the functions ~A(t) satisfy the integral equations 

t 
~A(t ) = ~0)- (t) - J d~ ~(t-T) ~A(~) f'(W(~)) for ~ = L, M 

0 

and a similar equation for CD' with the functions . (0) expressible in 
~A 

(0) is bounded in L 2 uniform- terms of ( ~0' ~0 ). One sees easily that ~A 

ly in time (with an additional Log t factor for ~0)if" n = 2) and " it 

remains to estimate ~A in L 2 by using the integral~ equations. The func- 

tion f' (~) in the integrand is estimated by the use of the estimates 

(4.5)-(4.7) and possibly additional estimates obtained therefrom by 

substituting them in the integral equation (4.15) for ~ In space 

dimension n a 3, the method requires the use of homogeneous Besov spaces 

[ 2] and of estimates of the operator K(t) acting between such spaces. 

It is reasonably simple in dimensions 3 and 4. The case of higher di- 

mensions is more complicated and has not been worked out in details. 
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Here ~e only state the final results for n = 2, 3, 4, and refer to E83 

and [9] for the details of the proofs in dimensions n = 2 and n = 3, 

4 respectively. In the latter case, one needs a slight reinforcement 

of the assumption (AI), in the following form 

(AI') f c ~2( ~, ~), f(0) = f' (0) = 0, and f satisfies the estimate 

If"(z) I Max l~2f/~z21, l~2f/~z ~71 ,I~2f/~721) _ C(IzlPl-2+ Izl p2-2 = < ) 

for some PI' P2 with 1 ~ Pl ~ P2 < 1 +4/(n-2) and all z c C . 

Proposition 4.2 If n = 2, let f satisfy (AI), (A2) and (A3') with 

2 + /5 ~ P2(2) < pl(~ 5). If n = 3, 4, let f satisfy (AI'), (A2) and 

(A3') with P2(n) < pl(~l + 4/(n-l)) and Pl ~ ~2 ~ 1 + 4n [(n-2) (n+l)~ -I. 

Let ( ~0' ~0 ) c Z , let t o e ~ and let ( ~,~ ) e ~ (~ ,Z) be the solu- 

tion of (i.I) with initial data ( ~0 ~ ~0 ) at time t o . Then 

Q0(t, W, ~) ~ C(l + Log+Itl )2 if n = 2 , 

Q0(t, ~,~ ) ~ C if n = 3, 4 

The time decay properties of the solutions of (i.i) follow from 

Proposition 3.2, its analogue for n = 2, and Propositions 4.1 and 4.2. 

In particular all solutions of (i.i) with ini£ial data in Z satisfy 

the optimal decay (1.15) for 2 ~ ~ ~ 2*under the assumptions of Proposi- 

tion 4.1 for n a 3 and of Proposition 4.2 for n = 3, 4. 
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In this article we give a short introduction to white noise anal- 

ysis, with special emphasis to generalized and positive generalized 

white noise functionals and the causal calculus. These will be the 

main ingredients for the discussion of Dirichlet and energy forms in 

this framework as examples of application [8,9]. For more details on 

white noise analysis see e.g. [6,7,11,12] and literature quoted there. 

I. White Noise 

For simplicity we shall work in this article mostly with white noise 

with one dimensional time parameter. The aeneralization of notions 

and statements to higher dimensional "time" will be obvious. Thus we 

consider the Gel'fand triple 

L 2 S' (JR) ~ (JR, dt) ~ S(]R) (I .I) 

which by Minlos' theorem [3,5] induces a Gaussian measure dp on the 

a-algebra B over S'(~) generated by the cylinder sets such that 

for all ~ £ S(~) 

[ ei<X'~>d~ (x) = e -I/2(~'~) 
Js' (m) (I .2) 
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where we denoted the pairing of S' (~) and S(~) by <-,-> and 

the L2(~, dt) scalar product by (.,.). In fact one can prove that 

dp is supported by the Sobolev space S_e(~, dt), e > I/2, which is 

defined as the completion of S(~) under the norm 

11fll = il H-efll (1.3) 
--(% 

where the last norm is the one of L2(~,dt) and H is the Hamilton- 

ian of the harmonic oscillator: H = -d2/dt 2 +t 2 + I (we have added 1 

to the usual Hamiltonian for later purposes). 

For p > I, we shall denote the Banach space LP(s' (~), B,d~) by 

(L p) . 

It is well-known (e.g. [5]) that (L 2) is isometric to the sym- 

metric Fock space over L2(~, dt) (complexified) 

(L 2) ~ (9 L 2(]Rn,n! dnt) 
n=O 

(1 .4) 

^ 

where denotes symmetrization and if n = 0 we mean ~. Therefore 

(L 2) admits a direct sum decomposition (L 2) = • H (n) , and H -(n) 

n=O(n) H(n) 
i s  c a l l e d  t h e  n - t h  h o m o g e n e o u s  c h a o s .  E l e m e n t s  i n  c a n  

be visualized in the following way 

where 

uct:' . 

~0 (n) (x) = [ f(n) (t) :xen: (t)dnt, x 6 S' (~) (I .5) 
J 
]R n 

f(n) 6 L2(]pn,n! dnt) and : : denotes a "Wick ordered prod- 

It is defined recursively by 

0 
:X : = I 

:x: (t I) = x(t I) , t I 6 ]R (1.6) 

8n @(n-l) 
:x : (t) = X(tn) :x : (t I ..... tn_ I) 

n-1 ® (n-2) 
- Z ~ (tn-t k) :x 

k=1 
: (tl' .... /k'''''tn-l) 
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(t = (tl, .... tn)). Then it takes a moment's thought to see that for 

f(n) £ s(~n) (1.5) is well-defined, if one interpretes the integral 

on the right as dual pairing. For f(n) £ L2~n) (1.5) has to be in- 

terpreted as the (L2)-limit of expressions like (1.5) with f(n) ap- 

proximated by functions in s(~n). In terms of ~ = Z ~(n £ (L2), 
n 

(n) as in (1.5), the isometry (1.4) reads 

II~II 2 = ~ n! fir(n) Jl 2 (1.7) 
(L 2) n=O L2(~n,dnt) 

Let us now introduce a useful transformation on (L 2) [11]: 

(S~) (~) := f ~0(x+~)d~ (x) , £ S(~) (1.8) 

(n) 
One readily checks that ~ in (1.5) transforms as: 

(S (n)) (~) = [ f(n) (t)~@n(t)dnt (I .9) 

~n 

which we may view as the evaluation of the tensor f(n) 6 (L2(~,dt)) ~n 

on (~,...,~) £ (L2(IR, dt))@n; in other words, we identify S~ (n) in 

a unique way with an element in (L2(~., dr)) ~n and therefore the range 

of S is the symmetric Fock space over L 2(]R,dt): S implements the 

isometry (1.4). 

We conclude this subsection by giving attention to a special element 

in (L 2) , in fact in H(1) , namely B(t;x) = <x,1[O,t)>, t > O, (under- 

stoDd as an (L2)-limit, s.~.) which is a version of Brownian motion and 

due to this relation we interprete B(t;x) - x(t) as the time deriva- 

tive of Brownian motion. 

2. Generalized Functionals 

There are many motivations for the introduction of generalized 

functionals of white noise, but here we confine ourselves to mention 

that in section 4 we shall construct energy forms based on certain pos- 

tive generalized functionals. For other motivations we refer the read- 

er to the literature quoted in the references. Also, it should be 

pointed out that the type and construction of such spaces of generalized 
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functionals - like in finite dimensions - will vary with the applica- 

tion one has in mind. For our purposes it is convenient to use a con- 

struction based on second quantized operators (cf. also [11,15,19]). 

Consider again the symmetric Fock space over L2(~, dt) : 

^ 

= • (L 2 (JR, dt) )On 
n=O 

( 2 . 1 )  

(which we identify with the r.h.s, of (1.4)). If A is a linear, clos- 
^ 

able operator we may define it second quantization F(A) on F by 

setting 

^ = A ®n 
F (A) (L 2(jR, dt))®n 

(2.2) 

and extending (2.2) linearly [16]. We choose A = H, H being the 

Hamiltonian of the harmonic oscillator (cf. section I). Mote that 

^ 

F (H) On > 2n (2.3) 
(L 2 (•, at) ) 

The isometry (1.4) defines now a unitary image of F (H) on (L 2) and 

we denote it by the same symbol for simplicity. Moreover we set for 

p 6 ~ 
o 

(Sp) := D(r (H p)) c (L 2) (2.4) 

D(F(HP)) denoting the completed domain of F(HP). Clearly (Sp) is 

a Hilbert subspace of (L2). Also it is not hard to see that the sys- 

tem of norms (ll.l12,p; p £ ~o ) of the spaces (Sp) is a compatible 

system (see e.g. [3]). Let us define the space 

(S) := n (Sp) ( 2 . 5 )  
p£1N 

o 

as the projective limit of the family ((Sp); p 6 ~o ) . (S) is a 

countably Hilbert nuclear space [3,11]. Its dual is given by [3] 

(S) * = U (S_p) 
p E ~  

0 

(2.6) 
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where (S_p) 

clear rigging 

is the dual of (Sp). We have therefore obtained a nu- 

(S)* ~ (L 2) ~ (S) (2.7) 

and it is easy to check that (S) is dense in (L 2) (cf. [8] for an 

argument). White noise functionals in (S) are called testfunctionals, 

while those in (S) ~ are called ~eneralized functionals. The dual 

pairing between (S) ~ and (S) will also be denoted by <.,.>. 

A very useful property of (S) is [8,11] 

Lemma 2.1: 

(S) is an algebra. 

In order to give the reader an intuitive idea about the space (S), 

we remark that in the representation (1.5) of ~(n) belonging to (S)D H (n) 

f(n) is a member of S$~ n) (symmetric Schwartz space) and i[~(n) iI (L 2) 

falls off in n faster than any exponential. 

From the last remark it should be clear that there are elements in 

(S) * which correspond formally to functionals like (1.5) with f(n) 
A 

£ S'(~n), e.g. :x(t)n: and the like. 

Another class of functionals in (S) ~, so-called Gauss kernels, 

will be described next. This class will later provide the first exam- 

ples of singular measures which yield energy forms. 

Formally speaking we want to construct elements like 

~un(X) = exp(-I/2 <x,Kx>) (2.8) 

in (S)*, where K is some operator on L2(~, dt). In [18] (2.8) had 

been studied for K of Hilbert-Schmidt type with the following result: 
-I 

if K > -I, NK(I+K) ilH. S < I and K is trace class, then (2.8) ex- 

ists (as it stands) in' "(L2). If the trace class condition is drop- 

ped, ~un belongs after a multiplicative renormalization ("division by 

the expectation") to (L2): we denote this element by 

~(x) = N exp(- I/2 <x,Kx>) (2.9) 

For more general linear selfadjoint operators K on L2(~,dt) we 
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proved in [9] the following 

Lemma 2.2 : 

Assume that K > -I and that for some p 6 IN 

(i) II H-PK (I+K) -1H-PII < I 
H.S. 

(ii) TI H-P (I+K) -2H-Plr < 
H.S. 

Then there is an element ~ in (S) ~ (in fact in 

denoted as in (2.9), with characteristic functional 

<@, exp i<.,~>> = exp(-I/2(~, (I+K)-I~)) 

(~ 6 s(m)). 

(2.10.a) 

(2.10.b) 

(S_p) , formally 

(2.11) 

Remark: Without condition (2.10.b) this has been shown in [9] for K 

with K > -I +e, e > O. The above lemma can be proved on the basis of 

this result by a simple limiting argument, which makes use of (2.10.b). 

Gauss kernels have an important property: they are positive in 

the sense that they map every positive (a.c.) element in (S) into a 

positive number. Elements in (S) ~ with this property will be called 

from now on positive generalized functionals. A useful theorem about 

positive generalized functionals is found in a paper by Yokoi [19]: 

Theorem 2.3: 

If ~ 6 (S) + is positive, then there exists a unique finite posi- 

tive measure ~ on B so that for every F 6 (S) 

= ~(x)d~ (x) (2.12) <~,F> 

where ~ is the continuous version of F. 

3. White Noise Calculus 

This subsection will be rather sketchy, since by now the white 
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noise calculus can be considered as being well-established. For further 

details we refer the interested reader to [5,9,11,12] and references 

quoted there. 

The idea is to regard the generalized random variable x(t), i.e. 

white noise "at time t", as a continuously indexed system of coordi- 

nates and to build a differential calculus with these coordinates. Thus 

we introduce a differential operator ~t = Z/~x(t) as follows 

Definition 3.1: 

On (S) we set 

-I @ 
~t := S ~ (t-----~ S, t 6 IR (3.1) 

where ~/6~ (t) is the Fr6chet functional derivative, and 

transformation (1.8). 

S is the 

With this definition one can check that ~t is indeed a deriva- 

tion on (S) (i.e. it admits the Leibniz rule) and also one can prove 

a chain rule [14], Of course the domain of definition of ~t can be 

largely extended. Here we confine ourselves to mention the following 

results 

Lemma 3.2 : 

(i) 8t maps (S) continuously into itself 

(ii) 8t is an annihilation operator: if we denote 

N H (n) (cf. section 2), then 

,(n) ~ Hin-l) 
~t: if+ 

•(n) + := (S) 

(3.2) 

of ~ is defined as that The adjoint operator ~t t 

<~[},F> = <#,~tF> 

for all ¢ 6 (S) ~ and all F 6 (S). 

(3.3) 
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Lemma 3.3: 

(i) St* maps (S)* continuously (in the weak-~-topoloqy)_ into itself 

(ii) 8t ~ is a creation operator: denote H (h)_ := (H(n)) ~ _  , then 

* H (n) ~ H (n+1 
~t: - 

(3.4) 

(iii) we have the canonical commutation relations 

[3t'3*]s = 6 (t-s) (3.5.a) 

[~t,~s] = [~t,~s] = o ( 3 . ~ . b )  

(iv) multiplication by x(t), t 6 ~, is defined as a mapping from 

(S) into (S) ~ by 

:~ + ~t (3.6) x(t)- : ~t 

Formula (3.6) is the starting point of a reformulation of stochas- 

tic integrals within the white noise calculus, which leads to important 

generalizations of the standard stochastic integrals, cf. [13]. 

4. Energy Forms 

In this subsection we shall sketch how energy forms [2] can be 

handled within the framework of white noise analysis. For more details 

and references for other approaches of energy forms in infinite dimen- 

sion we refer the reader to our paper [8]. A review about the finite 

dimensional case is given in [17]. 

Roughly speaking the main idea is to generalize the finite dimen- 

sional form 

r 
~ ( f i g )  ] (Vf) ( x ) .  (Vg) ( x ) d v  (x) : =  

J ]R n 
( 4 . 1 )  

where d~ is some positive a-finite measure - the "ground-state mea- 

sure" - to an infinite dimensional situation. If e in (4.1) is clos~ 
^ 

able, then it defines uniquely a selfadjoint positive operator H on 
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L2(~ n d~) [10] This representation of quantum mechanics allows for 

constructions of Hamiltonians H which in the Schr~dinger representa- 

tion with H = -4 +V would have very singular potentials V. Thus 

this strategy seems promising for quantum field theory. 

We shall work in this section with white noise with d-dimensional 

time parameter, i.e. with the basic triplet 

S' ~d) ~ L2(~ d, dt) ~ S(~ d) (4.2) 

and without further mentioning we shall use the notions introduced in 

the preceding sections in this context. 

From how on let # be some positive generalized functional in 

(S) ~ By theorem 2.3 ~ defines a measure on S' (~ d) which we shall 

denote by ~(x)d~(x), d~ being the white noise measure, although this 

measure is in general not absolutely continuous with respect to d~. 

On the basis of lemma 2.1 and lemma 2.2 (cf. also the remark after 

lemma 2.1) it is not hard show that the following lemma holds. 

Lemma 4. I : 

If F,G E (S), then also ?F-?G E (S) with 

?F := (~tF; t 6 ~R d) 

and 

(4.3) 

?F.?G = J | dt(~tF) (~tG) (4.4) 
~d 

Therefore we may define the following sesquilinear form on (S) : 

e(E,G) := <~,VF-VG> (4.5) 

[(VF(x)) • (VS(x))~(x)d~ (x) (4.6) i =j 

Equality (4.6) follows from theorem 2.3 (upon identification of elements 

in (S) with their continuous representant). Since (S) is dense in 

L 2 (L2)# := ~dp), e is a densely defined, symmetric form on (S, (rod), 

(L2)~. 

Next arises the question of closability of the form e in (L2)~, 
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which would guarantee the existence of a unique selfadjoint operator 

on (L2)~ with 

~(F,G) = (F,HG)¢ (4.7) 

for all F,G 6 D(~I/2) = 0(5), where [ is the closure of e 

(''')4 is the (L2)¢ scalar product, [IO,p.322]. 

and 

Definition 4.2: 

Let ~ 6 (S) ~ be positive. ~ is called admissible iff its asso- 

ciated symmetric form £ (cf. (4.5)) is closable. 

We can prove the following criterium [8,9] 

Theorem 4.3: 

If ~ 6 (S) ~, positive, is such that for every t 6 ]R d ~t % = B(t)# 

with 

for every 0 6 S(]Rd), then 

r B(t)o(t)dt 6 (s) ] (4.8) 

is admissible. 

Example 4.4: 

The Gauss kernels of section 2 are admissible, if the operator K 

(cf. (2.9)) on L2(~ d dt) is such that K 'maps S(~ d) into itself 
I 

Specially, one can choose K = (-~+m2) I/2" , m 2 > O. As is shown in 

[9], this provides a representation of the free relativistic massive 

boson field in d space dimensions as a generalized white noise func- 

tional. 

For a criterium in the case that the measure induced by ~ is 

absolutely continuous w.r.t, d~, we refer to our paper [8]. 

In [I] also non-Gaussian measures will be treated. 
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Principles of So l i ta ry  Wave S t a b i l i t y  
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I .  Introduct ion 

A l o t  of physical systems can be described by nonlinear d i f f e ren t i a l  equations 

which admit solutions in the form of so-called so l i t a ry  waves. By a so l i t a ry  wave 

we mean a local ized wave which keeps i t s  form or shape. Physical ly, a basic problem 

is to understand the ro le of these local ized nonlinear objects. One of the most im- 

portant and natural requirements for  so l i ta ry  waves is the condit ion of s t a b i l i t y .  

For example, in par t i c le  physics classical nonlinear wave equations form a basis 

for  the construction of quantum objects. In a l l  invest igat ions the f i r s t  order 

approximation deals with the equations as i f  they were describing classical f i e l d  

conf igurat ions, rather than quantum operator f i e lds .  In such a case the demand for 

classical s t a b i l i t y  is motivated by the requirement that the corresponding quantum 

state should be stable. [  J ] 

Unfortunately the meaning of s t a b i l i t y  is not unique in the sense that there exist  

a l o t  of d i f fe ren t  de f in i t ions  (or notions) of s t a b i l i t y  used in the l i t e ra tu re  and 

the information about the re lat ions between these concepts of s t a b i l i t y  are very mea- 

ger. The aim of this contr ibut ion is therefore to give a br ie f  survey about the 

s t a b i l i t y  problem and to report on recent progress in this f i e l d .  Furthermore using 

simple conditions we prove some re lat ions between several concepts of so l i t a ry  wave 

s t a b i l i t y .  

In Section 2 we present a general framework for  the s t a b i l i t y  of so l i ta ry  waves. 

We res t r i c t  ourselves to Hamiltonian systems since the Hamiltonian structure w i l l  

al low to extend a l l  the s t a b i l i t y  methods developed in classical mechanics ( i . e .  

for  systems having f i n i t e  degrees of freedom) to systems with i n f i n i t e  degrees of 

freedom. 

In Section 3 we study the re lat ions between several concepts of s t a b i l i t y  and 

prove some simple theorems on them. In par t i cu la r ,  we are interested in the re la t ion  

between energetic and nonlinear s t a b i l i t y .  

In Section 4 we report on recent numerical work concerning so l i ton s t a b i l i t y  in 

nonintegrable systems. 
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2. ~ncepts of S t a b i l i t y  

pointed out in the in t roduc t ion  we shal l  consider Hamil tonian systems only.  In 

the standard form they can be wr i t t en  as 

du 
(H) ~-~ : J E'(u) 

on a funct ion space (e.g. a H i l b e r t  space) where E denotes the energy, E' i t s  der i -  

va t ive  ~ i t h  respect to u '  and J is a skew-symmetric l i n e a r  operator.  

Typical examples fo r  (H) on an i n f i n i t e  dimensional space which ar ise  from c lass i -  

cal f i e l d  theory are nonl inear  Klein-Gordon equations 

(NLKG) ~tt-A~ + m2~ - g ( l~ l  2)~ = 0 onR N 

nonl inear  SchrUdinger equations 

(NLS) i~ t + ~ + f ( l ~ I 2 ) ~  = 0 on R 

and nonl inear  Dirac equations 

3G(~?~) R N i¥03t  ~ + iyk~k ~ - m~ + ~ = 0 on (NLD) 

i < k < N, r = element of  the y-a lgebra.  

An i n te res t i ng  property of a l l  these equations is that  they possess add i t iona l  

symmetries l i k e  t r ans la t i on  invar iance and (global)  gauge invar iance.  These symme- 

t r i e s  generate add i t iona l  conserved quan t i t i es  l i k e  momentum (coming from trans- 

l a t i o n  invariance) and charge (coming from gauge invar iance) .  Therefore we may assume 

that  (H) is i nva r ian t  under cer ta in  group representat ions.  We fo l l ow now a recent 

paper where a ra ther  general s t a b i l i t y  theory has been presented [GSS]. We assume 

That (H) is i nva r i an t  under a one-parameter group of operators U( ' ) (an extension 

to more dimensional abel ian groups seems not to be d i f f i c u l t ) .  Let Q be the conserved 

quant i t y  associated to U(.) .  A s o l i t a r y  wave so lu t ion  is a so lu t ion  of  the form 

(2.1) u(t) = U ( ~ t ) ~  

I t  may be viewed as a c r i t i c a l  po in t  of the energy E subject to constant Q. This 

leads to the d e f i n i t i o n  of  energet ic s t a b i l i t y .  

D e f i n i t i o n  I :  Aso lu t i on  of  (H) given by (2.1) is ca l led  ene rge t i ca l l y  stable i f  

i t s  s ta t ionary  part  ~m is a local  minimum of the energy E subject to constant Q. 
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A su f f i c i en t  condit ion for  energetic s t a b i l i t y  is that  the l inear ized operator 

H = E"(@. m-]-wQ(@m) is flonnegative. One should note that Hm cannot be posi t ive 

since the symmetry causes a non t r i v ia l  nullspace (see [GSS] ) .  

Orbi tal  (or nonl inear) s t a b i l i t y  is defined as fo l lows. 

Def in i t ion  2: The solut ion U(mt)#m is cal led o r b i t a l l y  stable i f  for  any tubular 

neighborhood of 0 = { U ( s ) ~ , s  real}  there exists a neighborhood V of ~ 

such that a l l  t ra jec tor ies  u( t )  of (H) which s ta r t  in V remain in the given 

tube for  a l l  time. Otherwise we cal l  U(wt)#m unstable. 

In most cases one uses energetic s t a b i l i t y  to prove orb i ta l  s t a b i l i t y  by taking 

the energy as a Liapunov funct ional  [Be] but energetic s t a b i l i t y  is not a necessa- 

ry condit ion for  o rb i ta l  s t a b i l i t y  [JR,SV] . 

Another method to study the s t a b i l i t y  propert ies of so l i t a r y  wave solut ions is 

to l inear ize  the system around a so l i t a r y  wave U(mt)#m . The l inear ized dynamics 

is then described by the equation 

dw J H w 
(Hl i  n) d--~ = 

= E " ( ~  ~ - Q "  . with H . ~" ~ ( ~ )  

De f in i t i on  3: A so l i t a r y  wave U(mt)#m is cal led l inear  dynamically stable i f  any 

solut ion of the l inear ized system remains bounded for  t > 0 . 

Unfortunately th is  de f i n i t i on  is not d i r ec t l y  applicable since one has to solve 

the so cal led zero-mode problem [ ML] : The non t r i v ia l  nullspace of the l inear ized 

operator in the case of symmetries w i l l  generate solut ions which grow polynomial in 

time. Physical ly ,  however, these zero modes (or secular modes) have no meaning for  

the s t a b i l i t y  propert ies. Apart from some par t i cu la r  cases [W1 ] we do not have 

a rigorous resu l t  for, the l inear  dynamical s t a b i l i t y .  

Physica l ly ,  an in teres t ing  problem is to study the ' c o l l i s i o n '  of two so l i t a r y  

waves. I f  one in terprets  so l i t a r y  waves as par t ic les  then the in terac t ion  between 

two so l i t a r y  waves y ie lds information on the ' s t a b i l i t y '  of the considered forma- 

t ion.  I f  the so l i t a r y  waves in te rac t  e l a s t i c a l l y  then they have (at least asympto- 

t i c a l l y )  the same shape as before. In such a case these so l i t a r y  waves are cal led 

so l i ton . Mathematically the so l i ton property is related to the complete integra- 

b i l i t y  of the corresponding f i e l d  equation. Soli tons have been found ana l y t i ca l l y  

by the inverse scat ter ing transform, e.g. fo r  the sine-Gordon equation 

(S-G) ~ t t  - ~xx + sin ~ = 0 . 
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This method also permits an a n a l y t i c a l l y  study of  so l i t on  in te rac t ions .  

Unfor tunate ly  nonintegrable systems, e.go the 94-model 

(94 ) 9 t t  - 9xx - 9 + 93 = 0 , 

abound in physics and the powerful methods ava i l ab le  fo r  in tegrab le  systems do not 

apply to these models. 

3. Relat ions between energet ic  l i n e a r  and non l inear  s t a b i l i t y  

To discuss the r e l a t i o n  between energet ic  and nonl inear  s t a b i l i t y  we s ta r t  with 

a ra ther  general but simple theorem. 

Theorem 3.1: Let 9o be a so lu t ion  of  (H) , i . e .  E'(Uo) = 0 such that  the l i -  

near operator  E"(9o) sa t i s f i es  

(3.1) <E"(9^)w,w > > c Hwll 2 fo r  some c > 0 
u 

Then 9 o is l i n e a r l y  and non l i nea r l y  s table.  

Proof: F i r s t  of  a l l  we note that  (3.1) impl ies the energet ic  s t a b i l i t y .  To prove 

the l i n e a r  s t a b i l i t y  we use the l i nea r i zed  energy <E"(9o)W,W> as a Liapunov func- 

t i ona l .  The l i nea r i zed  energy is conserved fo r  (H l in )  and the norm can be 

con t ro l led  by estimate (3.1). Each so lu t ion  of  the l i nea r i zed  system remains boun- 

ded which impl ies the l i n e a r  s t a b i l i t y  of  u o 

To prove nonl inear  s t a b i l i t y  we observe that  (3.1) impl ies the existence o f  

>0 such that  

(3.2) E(u) - E(9o) ~ c II U -9o l l  2 

fo r  a l l  u with II U - 9 o l i <  E . Estimate (3.2) w i l l  then imply the non l inear  

s t a b i l i t y .  [] 

I f  there is an add i t iona l  conserved quant i ty  Q , e.g. the charge, then an e s t i -  

mate of  the type (3.1) fo r  a l l  per turbat ions which keep the quant i t y  Q f i xed  

w i l l  be s u f f i c i e n t  to prove non l inear  s t a b i l i t y .  

To i l l u s t r a t e  th is  fac t  l e t  us consider the fo l l ow ing  dimensional Klein Gordon 

equation 

(3.3) Utt  - U×x + U - IUI 2p U = 0 on R 

I t  can be eas i l y  checked that  fo r  each m wi th m 2 < i equation (3.3) posses- 

ses a unique so lu t ion  (up to t rans la t ions  in space and phase) of  the form 
imt , , R+ .e um~x ) with u symmetric, pos i t i ve  funct ion s t r i c t l y  decreasing on . One 

W 

can prove that  i f  
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'2 
(3.4) d(~) m I u (x) dx 

sa t i s f ies  d"(~) > 0 then u~ is energet ica l ly  and nonl inear ly  stable. 

The energy and the charge associated to (3.3) are given by 

E(u 'ut)  = ½ f lu t  12 + lUx 12 p+ll lul2p+2 dx 

Q(u,ut) = Im ~ u u t dx 

Indeed in [BSV1] we show that estimate (3.1) is va l id  for  a l l  tangent vectors 

of curves 

b i t  of u ( x )  

d2 E(Ul(~),u2(~)) > C(IIy I I~ + lly 2 II 
d X 2 ~=0 

d u j (x)  
where Yj =T~  z=O . 

(Ul(~),u2(~))  which keep the charge f ixed and are orthogonal to the or- 

2 ) 

Results in the same d i rect ion have been obtained for a l o t  of nonlinear f i e l d  

equations [Be, Bo, GSS, W2] . 

I n s t a b i l i t y  resul ts for  nonl inear Klein Gordon equation have been proved i f  

d"(~) < 0 in [SS] . 

For nonl inear Dirac equations the s i tua t ion  is much more d i f f i c u l t .  So l i ta ry  wa- 

ves of the Gross-Neve model or the Th i r r ing  model are expected to be nonl inear ly  

stable but as we showed in [BSV2] they are always energet ica l ly  unstable which can 

be traced back to the i nde f i n i t e  'K ine t ic '  term in the energy. 

4. Sol i ton s t a b i l i t y  

We f i n i sh  our lecture with a few remarks on so l i ton s t a b i l i t y .  As pointed out 

in the in t roduct ion the so l i ton  s t a b i l i t y  is related to the complete i n t e g r a b i l i t y  

of the corresponding wave equation. In such case when the so l i t a r y  waves in te rac t ,  

they are always scattered e l a s t i c a l l y ,  preserving asymptot ical ly t he i r  shape. The 

i n t e g r a b i l i t y  also permits an analy t ica l  study of the mu l t i so l i t on  in teract ions.  
[DEGM] 

In many real physical systems the basic models are not integrable,  and in other 

cases the i n t e g r a b i l i t y  condit ion (and then the so l i t on i c  s t a b i l i t y )  is destroyed 

due to physical perturbations ( impur i t ies ,  external f i e lds  . . . .  ). In certain cases 

of small perturbat ions, the so l i t a r y  wave interact ions can be treated a n a l y t i c a l l y ,  

but, in general, we must study numerical ly the dynami:cs of the so l i t a r y  waves c o l l i -  

sions. The understanding of the in terac t ion  mechanisms can be used to given a mea- 

sure of how far  is the system from an integrable one. The natural mathematical 
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frame of the co l l i s i on  phenomenology would be a KAM theorem for  i n f i n i t e  dimensio- 

nal systems. 

There are many numerical studies, begun in the mid 1970's, about the co l l i s ions  

of so l i t a ry  waves in non-integrable systems [AKL,M,CP,CPS] . Here we summarize 

some of the obtained resul ts :  

(1) Col l is ions of so l i t a r y  Waves, in one spatial  dimension, in conf ining models 

[ST,AKL] : In such co l l i s i ons  new local ized objects are generated, which are 

pulsat ing in time, and they appear to be stable. 

(2) Col l is ions of the so l i t a ry  waves associated to the one-dimensional Dirac f i e l d  

with a scalar se l f - i n te rac t i on  [AC] : 

The numerical experiments showed ine las t i c  in teract ions and bound state produc- 

t ion  in binary co l l i s i ons .  Also i t  was observed charge and energy interchange 

except for  some par t i cu la r  i n i t i a l  ve loc i t i es  of the so l i t a r y  waves. 

(3) K ink -An t i k i nk  (K K) co l l i s ions  in the one-dimensional nonlinear Klein-Gordon 

equations 

# t t  - @xx I @ + @~ = 0 

- #xx + s in#  +2~ sin ~ = 0 # t t  
I 

The fo l lowing features are observed in the center mass frame ( in which a Kink 

with ve loc i t y  V co l l ides  with an ant ik ink wi th ve loc i ty  - V) 

(a) For lower ve loc i t ies  than a c r i t i c a l  value (Vc) there is a "trapping" and 

an osc i l l a to r y  state is created. 

(b) Ine last ic  in teract ions:  the f ina l  ve loc i t y  of the so l i t a r y  waves is less then 

the i r  i n i t i a l  ve loc i t y .  

(c) For wel l -def ined ve loc i t i es ,  below V c , the K-K re f l ec t  once, escape to f i n i -  

te separation, and f i n a l l y  re f l ec t  again before separating to i n f i n i t y .  
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